Aid effectiveness and The political economy of economic research

Martin Paldam

Inst. of Econ., University of Aarhus, Denmark URL: http://www.martin.paldam.dk. Talk available from http://www.martin.paldam.dk/Foredrag.php

Joint work with **Chris** (Hristos) **Doucouliagos**, Deakin university, Melbourne, Australia The aid effectiveness: real economic growth per capita gthe aid share h = ODA/Y

Aid effectiveness on growth: $\partial g / \partial h = \beta$

- Is β positive and significant ?
- If you look at the data: Very dubious
- The next four slides should make you cry!

The zero correlation fact:

aid and growth for all countries with numbers

Period	N	Cor	Period	N	Cor
1960-65	92	-0.12	1985-90	143	-0.12
1965-70	103	-0.00	1990-95	169	-0.00
1970-75	111	-0.01	1995-00	178	0.09
1975-80	122	0.06	2000-05	175	-0.02
1980-85	134	0.09	Aver.	1227	-0.00

The correlation and the time dimension (full series)

The data show **The zero-correlation fact:** $cor(g, h) \approx 0$.

- Very bad: Much better for the world if $\beta > 0$ Big literature trying to overcome the zero-correlation fact. 25,000 regressions run on the 1,000 data shown.
- Is it likely that a model can be developed on these data showing a positive aid effectiveness?
- Sure but robustness is a problem!!
- Two methods for finding a positive β:
 control for: country heterogeneity and simultaneity

How to do it:

2 series with zero correlation: *g* and *h* Add sets 5 of controls, *z*, from set of 50 possible estimate model (1): $g = \beta h + (\gamma_1 z_1 + \gamma_5 z_5) + u$

- The 5 controls can be chosen in 50 over 5 ways it is 2,118,760 ways. Each gives an estimate of β
- The average of all these estimates is zero
- Half of the estimates are positive. 5% are significant.
- $2\frac{1}{2}$ % are significantly positive this is 52,969 estimates
- Choose one of those and you have shown that aid works and you have 52,968 estimates to show robustness
- Thus, it can be done! And it has!

How can the results of such a game be made convincing ?

• Independent replication.

Same model, new data, new authors \rightarrow same results.

- Meta studies show a genuine effect, β_M ≠ 0
 See TD Stanley and H Doucouliagos, 2012
 Meta-Regression Analysis in Economics and Business.
 Routledge, London
- Now to my own contributions:
 3 primary studies + pt 7 (4 WP) meta studies

Primary studies: With different co-authors

P.S. Jensen. Can the new aid-growth models be replicated? *Public Choice* 127, 147–75. 2006

Mere hjælp til Afrika. Hvad vil man opnå? Effekten af hjælp på vækst, korruption og demokrati i Afrika. Økonomi og Politik 80, 2-20. 2007

T.T. Herbertsson. Does development aid help poor countries converge to our standard of living? *Danish Economic Journal* 145, 188-214. 2007

Bibliographies: PW Christensen, HD & MP

Master list of the AEL: the Aid Effectiveness Literature. (152 papers) 2nd ed. 2009

Master list of the AAL: the Aid Allocation Literature. (166 papers). 2007

Meta studies of the AEL by HD & MP: $h \rightarrow g ++$

- 1 Aid effectiveness on accumulation. A meta study. *Kyklos* 59, 227-54. 2006
- 2 Aid effectiveness on Growth. A meta study. *EJPE* 24, 1-24. 2008
- 3 Conditional aid effectiveness. A meta study. *J. of International Development* 22, 391-410. 2010
- 4 The aid effectiveness literature. The sad results of 40 years of research. *J. of Economic Surveys* 23, 433-61. 2009
- 5 The Ineffectiveness of Development Aid on Growth: **An update.** *EJPE* 27, 399–404. 2011

Mekasha, T.J., Tarp, F. Aid and growth. What meta-analysis reveals. J. of Development Studies May. 2013

6 The robust result in meta-analysis of aid effectiveness: A response to Mekasha and Tarp. *J of Development Studies* May. 2013 11

Meta studies of the AAL by HD & MP: $g ++ \rightarrow h$

- 1 Explaining development aid allocation by growth: A meta study. *Journal* of Entrepreneurship & Public Policy 2, 2013
- 2 Development aid inertia: Stylized facts and a meta study. WP
- 3 The effects of income and population on development aid: A quantitative survey of the data and the literature. WP
- 4 Does development aid reward good behavior? A meta-analysis of the effects human rights and democracy. WP
- 5 Commercial and strategic interests. Preliminary

The presentation discusses the political economy of some of the results of **11 meta studies** (2 more planned) of:

- The AEL, Aid Effectiveness Literature, 2005-8. $h \rightarrow g, s, i, ...$ in recipient country 152 papers
- Also: The AAL, Aid Allocation Literature 2007-8.
 y, *g*, ... → *h*, recipient and donor relations 166 papers. Not today
- Meta studies → very strong reactions of referees:
 Most negative and positive I have experienced.

Meta: From the study an effect in the data
→ study the (full) literature on the effect.
Case: 300 papers, 360 authors, 250 man-years.
Taking this effort seriously.
By asking three questions to a literature:

- Q1. Does the result *converge* to something that we can consider the true value? **The meta-average**
- Q2. Are there *breakthroughs* (structural jumps) which can be identified and explained
- Q3. Does the distribution of the results the funnel have **asymmetries**, that is, *biases*

Two levels of the meta study of the parameter β :

- Level 1: Cookbook OK. Four steps:
 - -(s1) Collect the β -literature and the N-set
 - (s2) Code the sets of b_i , with s_i , $p_i = 1/s_i$, $t_i = b_i/s_i$
 - (s3) Study the funnel, which is the (b_i, p_i) -scatter
 - (s4) Calculate: The average <u>b</u>. The FAT-PET to get the FAT and the PET meta-average β_M .
 - Results very robust .
- Level 2: Identify + code the controls.
 - Explain the width of the funnel,
 - Augmented meta averages, if FAT = 0, else not!
 - No cookbook yet. **Results are less robust.**

In most literatures: Most b_i come with nice high *t*-ratios: We know β well. Also, statistical theory about reg. coefficient and many simulations of funnels. Thus:

- Funnels should be lean, and symmetrical.
- But two observations from many meta studies
- **Ob1**. Funnels are amazingly **wide**. Common with range of 3 4 times of estimates. High *t*'s an artifact
- **Ob2**. Funnels are often **asymmetric**, in ways that can be interpreted as **publication bias**.

The funnel plot 1,344 estimates of aid effectiveness

Back to the aid effectiveness literature The zero correlation result :

An insider-outsider asymmetry

- Well-known by insiders, but rarely mentioned and little-known outside circle of experts.
- Can we explain the insider-outsider asymmetry?
- PS: Insiders always more informed than outsiders, but the zero correlation result is very basic.

More important:

Can we get round the zero-correlation result? And still claim that aid generate development?

> First explanation of all economists: It is an artifact, due to biases

from rest of income-growth-aid nexus

The income-growth-aid nexus: A literature on each arrow: Aid effectiveness red

5 relations: Summary

- $(h \rightarrow g)$ -relation: Our subject
- $(g \rightarrow h)$ -relation: Simultaneity bias?
 - Two ways to study that:
 - Augment FAT-PET with simultaneity dummy. See update 2011. Result: small positive, insignificant.
 - Meta study of 30 papers of $g \rightarrow h$ relation. Result: Small, positive insignificant.
 - Bias: tiny positive not significant

 (g→y) x (y→h)-relation: Misspecification bias? Two ways to study that: Control relation for y.
 Significant, but unclear bias. Study both relation and multiply effects found.

- (*g*→*y*)-relation bookkeeping + absolute convergence: Small, positive, insignificant.
- (y→h)-relation: Meta study of 124 studies with 1,030 estimates of effect: Moderate OK
- Thus: Product of small and moderate is very small! **Bias tiny negative.**

Hence: The data is a big problem. They point to aid ineffectiveness

Shift perspective to research process Note: Researchers are human beings Economic theory assume: all humans have priors/interests.

- Why not us? Are we not human?
- Also economists have priors/interests.
- Further: We operate on the market for economic research. It may not be a perfect market. Our small talk at lunch tables, in bars etc. Often assumes that journals have biases, that referee processes are ...

Limit discussion to: (a) **Empirical** + (b) **macro**

- Ad (a): We analyze M studies of the same effect Ad (b): Data is limited relative to the amount of research. Thus *data mining problem*
- What can we prove?
- Meta studies claim they can prove a great deal. Not for individual studies, but for specific literature
- Our studies find typical results. (In a moment)

We like to believe that research is a process that search for truth that converges to *the* truth. In causa: Truth is the true value of β .

- Process within researcher, his incentives Process on market, its incentives
- Are the incentives truth-finding consistent?
- [In this research 94% male researchers + male/female researchers find same results]

Process within individual researcher:

- He search for a value of β, till he is satisfied. The paper is thus the result of a *stopping rule in his search process*:
- He stops when he has found a β that:
 (a) Is in accord with his priors or his interests
 (b) Is publishable
 - (c) Can be defended statistically
- PS: When he stops has he **found truth or confirmed his priors?**

Process on the market for papers: Innovation + replication generates trust in results

- Innovation: Theory, estimation technique, data. Innovation easy to publish (?)
- Replication: Much more difficult to publish
 - Independent: New authors on new data
 - *Dependent* (1): Same author on new data
 - *Dependent* (2): New author on same data
 - Macro: Normally overlapping data so only: Marginally independent
 Thus: Effect on estimate of extra data

Data mining: (important that we look at macro) The number of estimates on subsets of the same data is large relative to the number of observations

- Phillips curves. Estimated on the *w*, *p*, *u* data for 30 countries over the last 50 years? Guess: 5 mill estimates?
 Money demand: As many estimates
- Growth regressions (Sala-i-Martin alone 85 mill)
- Aid effectiveness part of growth regression

Consequence: Many false variables

- Type I errors reduced: Rejecting true model Type II errors increased: Accepting false models
- Hence in heavily mined fields: *Many type II errors: False variables*
- Thus independent replication necessary. And meta studies highly needed

Not problem of each researcher; but the collective. We all read up some of the literature and join the **mining collective**.

- We fish in the common pond of *df*'s. **A double tragedy of the common.**
- 1. It is the standard tragedy that we exhaust the *df*.
- 2. It is also a tragedy that nothing visible happens we can just go on and on!

The **AEL**, studies: $\mu = \partial g / \partial h$, conditional on everything our profession has thought of.

- Micro basis: Average LDC growth $g \approx 1.5\%$. Projects based on cost-benefit (growth contribution): Social rate of return 10%. Thus, $h = H/Y \approx 7.5\% \Rightarrow g \approx 0.75\%$: Half
- Some project irrelevant for growth: Thus only part of 0.75 pp: ¹/₄ - ¹/₂ of LDC growth should be due to aid.
- It should be highly visible in data, but it is not.

Thus a challenge: It is the AEL paper generator: In 2006 aid exceeded \$ 100 bill + AEL paper nr 100 published. Since then avalanche!

- Data: Aid started in mid 1960s. Now ap 145 data per year: and 6000 annual observations. Averaged to 5 years: about 1000.
- Regressions: Published 1,400, made 40,000? Alternative: Sum of N = 35,000
- Likely that false models have appeared

Thus, the AEL starts from a zero correlation, and put structure on this result till something appears.

• Model version of Barro-growth regression:

$$g_{it} = \alpha + \mu h_{it} + (\gamma x_{1it} + \dots + \gamma x_{nit}) + u_{it}$$

or
$$g_{it} = \alpha + \mu h_{it} + \delta z_{it} + \omega h_{it} z_{it} + (\gamma x_{1it} + \dots + \gamma x_{nit}) + u_{it}$$

Researchers have tried 60 *x*'es and 10 *z*'s.
 Many millions possible permutations, each gives a different estimate of µ. As average is zero half are positive, and 5% are significant. What to choose?

Funnel skew: Look for bias. Main possibilities

	Bias	From inside or outside
(1)	Polishing	Authors, referees, journals
(2)	Ideology	Mostly authors, some journals
(3)	Goodness	Authors, maybe journals
(4)	Interests	Sponsors \rightarrow authors and maybe journals
(5)	History	Authors have written before + belong to "clubs", write PhD under, seek job at , Journals have history too

In the AEL: everything goes together to generate: **The reluctancy bias Researchers and journals are reluctant to publish negative results**

PS: the insider-outsider asymmetry

- Proof follows
- Let us look at the 5 priors one at a time:

Polishing:

- We want to display our goods as well as possible.
- Then they are easier to sell to journals work more when insignificant
- Career + feel well.
- Strong incentives to publish:

It's publish or perish, and he hasn't published

What do we expect to see?

- Easier to polish in small samples: Study *t*-ratios as a function of *df*: *t* = *t*(*n*)
- If random *ln t* proportional to *ln n*:
- The MST: $ln |t_i| = \alpha_0 + \alpha_1 ln n_i + u_i$ test: $\alpha_1 < 0 \rightarrow$ polishing
- Often found in meta studies, in the AEL also.

Ideology: Ideology predicts the sign of $\beta \rightarrow$ **Bias:** authors with that ideology find **right** sign. In the AEL two ideological groups:

- Libertarians (Friedman, Bauer): Aid → larger public sectors → planning → socialism → harms
- "New-left": Aid from capitalist states → capitalism and exploitation → harms
- Both found negative sign as predicted (not many authors)

Goodness: Aid aims at something good hence it works

- Common finding: We all want to look good and most want to be politically correct
- Shown as asymmetry of funnel plot: **The FAT.** Part of the funnel is censored.
- In the AEL: Aid aims at doing good (+ ...) So to show that it fails is bad.
- Also, nice to be on the side of the angels: Bono, Jeff Sachs, Gordon Brown, Koffi Anan, etc.

Sponsor interests: Big sponsor is the aid industry

- Normally: Many different sponsors Ok.
- In the AEL: Diffuse interests on the one side. Aid Industry on other side. It claims that aid works!
- **Turnover for 2011 \$ 134 bill**. Big industry, with many parts: bureaucracy + political parties + NGOs + business + unions.
- Gives about 10% in consultancy fees + 0.25 to 0.5 % to research. Danida professor, UN-WIDER-institute 60 mill from aid industry to AEL research

Both goodness and sponsor interests causes reluctancy.

Researchers are reluctant to publish negative results

History of authors/groups

- 50% of authors are in one paper only. The rest are in more + many additional links.
- People are z > 0.5 committed after one paper to find the same result. Our guess z = 0.9
- Very significant: Fighting schools
- We now look at the FAT-PET tool and funnels

Two averages: Plain <u>b</u> and PET meta-average β_M The FAT-PET MRA (Tom Stanley)

- $b_i = \beta_M + \beta_F s_i + u_i = \beta_M + \beta_F / p_i + u_i$ β_M is the PET meta average β_F is the FAT, funnel asymmetry test
- The FAT-PET converge to β_M when $p_i \to \infty$
- PS: funnels should be symmetrical if the FAT ≠ 0 something is amiss: There is a bias

The literature (2c): Before 2000

The literature (2d): All 1,344

Are the results robust: Super test M&T from UN-WIDER tried to shoot us down:

Regression	(1) FAT	(2) PET	Ν	
	(i) Original D&P08 (p.11)			
Robust s.e.	0.73 (4.41)	0.03 (1.82)	541	
Clustered s.e.	0.73 (2.43)	0.03 (1.00)	541	
Robust regr.	0.83 (4.77)	0.02 (1.32)	541	
	(ii) M&T results (p.11)			
Robust s.e.	0.79 (4.84)	0.03 (1.73)	537	
Clustered s.e.	0.79 (2.67)	0.03 (0.94)	537	

	(iii) D&P08 with new revision			
Robust s.e.	0.69 (4.18)	0.03 (2.23)	536	
Clustered s.e.	0.69 (2.30)	0.03 (1.19)	536	
Robust reg.	0.79 (4.49)	0.03 (1.73)	536	
	(iv) D&P08 with published estimates			
Robust s.e.	0.66 (3.76)	0.04 (2.28)	512	
Clustered s.e.	0.66 (2.09)	0.04 (1.22)	512	
Robust reg.	0.82 (4.49)	0.02 (1.43)	512	
	(v) D&P08 with additional estimates			
Robust s.e.	0.70 (4.52)	0.03 (1.90)	618	
Clustered s.e.	0.70 (2.34)	0.03 (0.99)	618	
Robust reg.	0.81 (4.85)	0.02 (1.14)	6 ⁵¹ 8	

Proving reluctancy:

Asymmetry of missing negative values

How should it look? Should be visible on $\mu = \mu(N)$. Sorting out $\mu = \mu(N)$ and $\mu = \mu(t)$

Problem: Learning by doing: $\mu = \mu(t)$ should slope upward.

The Evolution of the Effect of Aid on Growth

	(1)	(2)	(3)
	Number of	Aids effect	Raw
	N [NP]	on growth, μ	average
Pre 1980	24 [7]	0.231 (0.71)	0.267
Pre 1990	88 [15]	0.080 (0.70)	0.204
Pre 2000	245 [34]	0.041 (0.67)	0.153
Pre 2009	979 [103]	0.023 (1.13)	0.059

Problem: No learning by doing,We find unlearning by doing ???Our interpretation: Publication bias fall with *n*

Run: $\beta_{Nt} = \alpha + \beta n + \gamma t + \varepsilon$

Problem: Multicollinearity, *n* and *t* rise together

α	β on n	γ on t	Obs
0.31 (7.1)	-0.043 (-4.7)		
0.19 (9.7)		-0.00027 (-4.4)	538
0.28 (5.9)	-0.026 (-2.1)	-0.00015 (-1.9)	

Thus: **Reluctancy confirmed** Is it goodness or interests?

- Test: Use (poorly measured) interest variable to identify interests
- Effect of interest: Always sign as expected, not always significant:
 It is not a big effect, but it is there!
- Thus 50-50 result

A few other results:

- No effect of quality of publication
- We have identified no structural shifts due to new theory or new estimators in the AEL.
- No effect of new estimators, but clear effect of new data.
- An incentive that is not truth finding consistent

The end: Conclusion 1

The literature has not overcome the zero correlation result:

We have to conclude that aid is ineffective in generating development The end: Conclusion 2

We behave as predicted by our theories

We are human!