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Abstract: The paper considers the literature on an important parameter. The literature can be 

modeled and simulated if researchers are rational, so that they behave as predicted by economic 

theory. Previous work has analyzed the parameter homogeneity case. Heterogeneity means that the 

variation within papers is smaller than between papers. Three key results generalize from the 

previous case: (1) Rationality biases the published estimates substantially in the direction of the 

priors of the researcher. (2) The bias is robust to all rational selection rules the researcher may use. 

(3) The PET estimate of the meta-average reduces the bias by more than 90%. The present case 

gives two additional results (4) It does not matter for the bias whether 1 or 10 estimates are 

published. What matters is the number of estimates for each published. (5) Parameter heterogeneity 

makes funnels more top-heavy, and increases the variation somewhat. 
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1. Modeling the rational economist 
 

This paper simulates the research of economists, who behave as predicted by economic theory. In 

the case analyzed they try to find the best estimate of a parameter β, where ‘best’ is defined in the 

two dimensions of size and fit (t-ratio) that all studies report. The parameter is important so M 

researchers have produced a β-literature with N estimates. For ease of presentation it is assumed that 

each of the M researchers publish one paper with 10 estimates. They show that the result is robust. 

It is assumed that economics has a basic theory about β. However, the theory is qualitative 

and allows many variants of the estimation model. Also, different data samples and estimators can 

be used. Thus, estimates of β have a substantial PPS, production possibility set. The PPF, produc-

tion possibility frontier, is the part of the rim of the PPS where production is effective, so that an 

increase in one of the two dimensions causes a fall of production in the other. 

Each author searches only some of the PPS as he looks at a subset of models and one data 

sample, but his PPS is still sizable, and it has a PPF. Economic theory says that the estimate chosen 

by a rational researcher is the one where his utmost IC, indifference curve, touches the PPF. Thus, 

papers differ both by the PPF and the ICs of the author. 

The M papers are presented in the usual way: (i) First a theory is developed. It is normally 

the basic theory with a twist. (ii) It is turned into an estimation model. (iii) A search is made of 

versions of the model on a data sample. (iv) The ten best estimates are selected for publication. 

This process is modeled and simulated as follows: (i) The theory is a data generating 

process, DGP; (ii) The estimating model, EM, is the same as the DGP; (iii) The DGP/EM-pair 

generates estimates. For each of the 10 published results, J estimates are searched by the researcher. 

Their efficient rim is the production possibility frontier, PPF; (iv) The researcher’s selection rule, 

SR, represents his indifference curves, IC, which are a function of the fit and size of the estimates; 

(iv) The PPF and ICs give one published estimate. 

The solution is a function of five variables: They are: J, SR and three variations (σβ, σx, σε) in 

the stochastic terms generating the data sample. Each choice of these five variables gives a solution. 

Even when a very parsimonious DGP is chosen, it still has five variables to vary in order to map the 

pattern in the solutions. Many simulations of each case are necessary for the pattern to stabilize on 

the equilibrium/expected results. Fortunately, the results have a simple pattern, which is easy to 

interpolate. Eight values are used for J and three for the SR. For the three variations a central case is 

chosen. It is supplemented by a low and a high variant. 
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The simulated β-literature is analyzed by the tools of meta-analysis, developed precisely for 

that purpose. A publication bias is defined as a systematic difference between the published 

estimates of β and the true value. It is due to the rational behavior of researchers, so it is a 

rationality bias. The meta-analysis estimates two meta regression analyses, MRAs, to retrieve the 

true value. The simulations show that one of these MRAs (the FAT-PET) finds and corrects most of 

the rationality bias. The other (PEESE) works less well. 

This set-up was already used in Paldam (2015b), which studied the pattern in the selected 

result for eight values of J and five values of the selection rule, SR. The analysis used many 

simplifications. Two of the most problematic were the assumptions of independent estimates and 

parameter homogeneity, modeled by assuming that each paper publishes one independent estimate 

of β = 1. 

The present paper relaxes these assumptions. The estimates are clustered in papers with 10 

estimates in each. An exogenous variation is added to β, so that β = N(1, σβ
2) where each paper uses 

one draw from the β-distribution.2 Thus, papers differ and the variation of the estimates is smaller 

within papers than between papers. 

However, the analysis still confirms the three main results of the previous study: (r1) All 

rational selection rules produce a substantial publication bias as soon as J > 1. (r2) The range of 

rational selections gives much the same bias. It is always in the direction of the main priors of the 

researchers. (r3) The PET meta-average corrects more than 90% of the bias. 

In addition two new results appear. (r4) It does not matter for the bias if one or ten estimates 

are published – what matters is the number of estimates J per published one. (r5) The extra variation 

when σβ ≠ 0 makes the funnel more top heavy and causes the meta-analysis to reject that β = 1 in 

more cases.  Section 2 explains how the simulations are set up. Section 3 looks at the rational 

researcher. Section 4 gives detailed results in the central case. The results are compared in section 5. 

Section 6 analyzes a low and a high variant relative to the central case for the three variances. 

Finally, section 7 concludes. 

  

                                                 
2. The set-up means that if σβ is set at zero, β is the same for all estimates both within and between papers, i.e., there is 
no paper-structure in the simulations, and everything is as in Paldam (2015b), which is thus the limiting case for σβ → 0. 
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2. The set-up of the simulation experiments 
 

The reader should note three numbers:  
 

N = 500 is the number of ‘published’ estimates of β in the simulated β-literature. The N-set comes 

from M = 50 ‘papers’ with K = 10 estimates in each. 

J = 1, 2, 5, 10, 15, 23, 34 and 50 (where ∑J = 140) are the number of estimates made for each ‘pub-

lished’. In fact, three N-sets are selected by the selection rule SR0, SR1 and SR2.3 

R = 1,000 or 10,000 is the number of experiments made for a production run. Each such run 

produces 8∙3 =24 N-sets, which is one for each value of J and SR.  
 

Section 2.1 describes the simulations. Section 2.2 looks at the results retained for each N-set. R is 

crucial for the computer time necessary to reach the three tables. Section 2.3 discusses how large R 

needs to be. Finally, section 2.4 is an introduction to the meta-analysis used to study the N-set.  

 

2.1 The DGP/EM set-up and the five variables: J, SR, σβ
2, σx

2 and σε
2 

The DGP/EM pair is the same, and it has only a β-term: 
 

(1a) DGP:  yt = β xt + εt, where β = N(1, σβ
2), xt = N(0, σx

2) and εt = N(0, σε
2). 

(1b) EM:  yt = b xt + ut, estimated by OLS. 
 

The three standard deviations in the DGP are: σβ, σx and σε. One value of β is generated for each 

paper, while one value of σx and σε are generated for each observation in the data sample used to 

estimate b ≈ β. The central case is (σβ, σx, σε) = (0.3, 2, 10). It is the same values for σx and σε used 

in (Paldam 2015), where the two variations were chosen to generate realistically looking distribu-

tions (funnels) of the estimates. Section 6 gives the experiments with variations around these values. 

In the DGP/EM all control variables are treated as parts of the noise terms. Therefore, σε is 

quite large. The expected value of β is 1, thus, the theory is true, even when β varies between 

papers. The new parameters in this paper are K = 10 and σβ. To see the effect of σβ, it is also made 

rather large, σβ = 0.3, relative to the expected mean β = 1. It gives a 95% confidence interval of (0.4 

to 1.6) for the βs. In addition to the choice of the three standard deviations, two more choices are 

made, SR that is discussed in section 3.1 and J defined above. 
                                                 
3. J is taken to be exogenous to the variables discussed as it is determined by the marginal costs and benefits of making 
regressions. The marginal costs of a regression are very small and the benefits substantial, so many are made. 
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One N-set mimics a β-literature of 500 ‘published’ estimates, where each published estimate 

is selected from J estimates made. For each estimate a new data sample is made, where each obser-

vation uses a new draw of N(0, σx
2) and N(0, σε

2). 

For each paper β is drawn once from N(1, σβ
2). This creates a cluster-dependency within the 

N-set, where the 10 estimates in a paper is a cluster. In empirical bodies of literature each paper 

typically works with the same data sample, and a ‘family’ of models, which are a sub-set of the 

larger class of β-models. Also, the author has the same priors throughout the paper. Thus the 500 

estimates within each N-set have 50 values of β that are distributed around 1, with a standard 

deviation of σβ. The clustering in papers gives the N-set a panel structure, with less variation within 

the papers than between the papers. Various ways have been developed to handle this, but the 

results are not very sensitive to these methods, so I just stick to a simple fixed-effect framework. 

 

2.2 R experiments: Increasing R till the pattern in the results becomes smooth  

One simulation experiment covers 24 = 3∙8 N-sets, which is one for each of the three SRs, and each 

of the eight values of J. It means that ∑J = 140 regressions are made. Thus, one experiment requires 

500∙140 = 7∙104 simulated regressions. 

The key result is the pattern in the expected/equilibrium results to which the average results 

converge. R experiments are made to study the pattern in the following six result-variables: b, t, v, 

βF, βM and βP – defined in Table 1 – when the five variables J, SR, σβ, σx and σε vary. 

The experiments generate averages of averages for b and t that soon become rather stable, but it 

turns out to be more difficult to get stable averages for the meta-averages, notably the PET, βM. It is 

close to 1 so it gives a small range of variation. This allows an enlargement of the range, so that 

even a small variation becomes visible, see Figure 6 below. 

Below I run J = 1, 2 and 5 with R = 10,000. It gives (1 +2 +5)∙500∙10,000 = 4∙107 regres-

sions and J = 10, 15, 23, 34 and 50 with R = 1,000. It gives (10 + 15 +23 + 34 +50) ∙500∙1,000 = 

6.6∙107 regressions, so the sum is 1.06∙108 regressions. The variability experiments described in 

section 6 are run for R = 500. They add 140∙6∙500∙500 = 2.1∙108 regressions, so everything sums to 

3.16∙108 regressions. This takes about one month of computer time.4 

 

2.3 The meta-analysis: Analyzing N-sets of 500 selected estimates 

The technique of meta-analysis is developed precisely to analyze N-sets. The technique is 

                                                 
4. I have used 2 fast pcs running for 3 weeks, which include the calibration of the models.  
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thoroughly covered by the recent textbook Stanley and Doucouliagos (2012).5 About 750 empirical 

meta-studies have been made in economics. 

A meta-study covers an N-set of empirical estimates that pertains to be of the same 

parameter, even when we suspect that there is some parameter heterogeneity in practice. They are 

from a set of papers that are so similar as regards the estimating models that the differences can be 

coded.6 The average meta-study covers about 50 studies, where each reports about 10 estimates. 

Thus, these numbers are used in the simulations, so the typical empirical N-set can be used to 

calibrate the simulations, as has been done. 

The data for the analysis is the N-set: (bi, ti, si, pi).The bi’s are rescaled to the same scale. As 

ti = bi/si is a ratio, with no unit of measurement, si and pi = 1/si are automatically rescaled when the 

b’s are. When the literature has been collected and coded, it is analyzed in two ways: 

(i) Graphically by displaying the distribution of the N-set as the (pi, bi)-scatter that is termed 

the funnel. It should have a broad base for low precision and a narrow top for high precision. Three 

specimens are shown in Figures 1 and 2. 

 
 

Table 1. The 5 variables analyzed: J, SR, σβ, σx and σε 

Variable Explanation (possibilities) One published One N-set R experiments 
Mechanics of search and selection of the publishes estimates , see section 3.1 

Regressions  Number made and searched J  J∙500 R∙140∙500 
Numbers searched J = 1, 2, 5, 10, 15, 23, 34 or 50 one chosen one all 8 
Selection rule SR = SR0, SR1 or SR2 one chosen one  all 3 
Published Each J and SR selects one 1 500 R∙24∙500 

Descriptive analysis of the estimates  
Estimate Coefficient and t-ratio ( , )b t    
Mean Unweighted arithmetic   b  b  
Mean t-ratio   t  t  

Meta-analysis of each N-sets, see section 2.4 
Funnel  The distribution of the N-set  Graph  
Std of N-set  Funnel width  v  v  
The FAT Funnel asymmetry test  Fβ  Fβ  
The PET Meta average to catch β  Mβ  Mβ  
The PEESE Meta average to catch β  Pβ  Pβ  

Note: The search mechanism has two parameters: J the number of estimates made per published one and SR the 
selection rule that picks one. Note that the sum ∑J = 140. A paper uses the same data sample. The selection process is 
run 10 times, so 10∙J regressions are made and 10 estimates are published.   
  
                                                 
5. A short introduction to the technique is found in Paldam (2015a). 
6. Estimating models are much more similar than theoretical models, so typically only a few papers have to be left out. 
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(ii) Statistically, by estimating the statistics listed in Table 1. The special meta-estimates are two, 

MRAs, which are regression on regression estimates: (1) the FAT-PET and (2) the PEESE: 
 

(1) bi = βM + βF si, where βF is the FAT and βM is the PET.7 

(2) bi = βP + βF si
2, where βF is an alternative FAT, and βP is the PEESE.8

 

 

The H0 of no asymmetry is βF = 0. In that case βM ≈ βP ≈ .b  If βF ≠ 0, b differs from both βM and 

βP, which are the values that the two MRAs converge to when si goes to zero. 

Obviously βM and βP should be good estimates of the true value of β. This is the way they 

have been treated by the meta-community: They are taken to be two estimates of the meta-average. 

The difference between (1) and (2) is the speed of convergence. Stanley (2008) considers the case 

where the funnel is fully or partly censored and shows that the FAT-PET works rather well to catch 

β. Later Stanley introduced the PEESE and Stanley and Doucouliagos (2014) showed that the 

PEESE is even closer to β than the FAT in that case.  

As mentioned, rational researchers create biases too. Rationality biases are different from 

censoring biases.9 In Paldam (2015b) the FAT-PET MRA did catch most of these biases, while the 

PEESE did less well, though better than the mean. It will be shown that this result generalizes also 

in the present case. In about 2/3 of empirical meta-studies the FAT detects asymmetry, and it is 

often obvious from a visual inspection of the funnel. If the study covers, e.g., 50 primary studies, it 

is unlikely that the research process has been the same in all studies, and we rarely have more than a 

vague knowledge of the research processes leading to the asymmetry, anyhow. The present study 

examines the possibility that researchers are rational. 

Thus, we have to admit that the conditions for applying the MRAs of meta-analysis are 

unlikely to hold strictly. However, till now all simulations where the true value of β is known have 

shown that the PET is (much) closer to β than is the mean. It is important to study the properties of 

these estimators in a range of circumstances to look for cases where they are safe to use. This is 

what is done in the rest of the paper.   

                                                 
7. The FAT-PET MRA is from Stanley (2008). The acronym is for Funnel Asymmetry Test and  Precision Estimate 
Test and Meta Regression Analyses 
8. The PEESE MRA is from Stanley and Doucouliagos (2007 and 2014). The acronym is for Precision-Effect Estimate 
with Standard Errors. 
9. It is not irrational to discard results that must be wrong, but it is not at the same level of rationality as a full optimiza-
tion as discussed in the rest of the paper. 
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3 The choices of the researcher 
 

Section 3.1 makes the claim that rational researchers reach much the same solutions. Section 3.2 

considers the choice of J, while the next sections turn to SR: Section 3.2 discusses the altruistic 

choice of truth only, while section 3.3 turns to the range of rational SRs. Section 3.4 looks at the 

ideal funnel and empirical funnels. 

 

3.1 The claim that different researchers make similar choices  

It is a widespread belief that if a group of, say, 50 independent researchers with different utility 

functions and interests study the same problem, truth will result. Meta-analysis contradicts that view 

by showing that most empirical literatures have biases. This must mean that a mechanism exists to 

make indifference curves and the choices they generate more alike than this belief assumes. I 

discuss two such mechanisms: 

(Mec 1) Researchers have to ‘sell’ their projects to sponsors and their papers to journals. 

Therefore, they will have to fulfil the expectations of sponsors, referees and editors. The rational 

author tries to internalize the preferences of these players. Thus, the market homogenizes the 

preferences of the rational researchers. 

(Mec 2) Estimates published in economics are (nearly) always given by a size and a fit, i.e., 

a t-ratio or a standard error. This must mean that the size and the fit are seen as the two key 

dimensions in the evaluation of the results, i.e., in the utility functions of authors.10 Rational 

researchers are likely to have different trade-offs between the fit and size of estimates. A key 

finding below – demonstrated in sections 4.4, 4.5 and discussed in 5.1 and 5.2 – is that all rational 

choices give amazingly similar results. 

The two mechanisms are independent of each other. This suggests that the combined effect 

is quite strong. 

 

3.2 The choice of J 

The choice of the researcher is modeled by two variables: The number J of regressions per 

published one and the selection rule SR.  

The rational choice of J is where the marginal cost of an extra regression equals the margi-

                                                 
10. Other variables may enter also, but the paper simplifies and assumes that the two variables are the only variables in 
the utility function. This is a main reason why the DGP/EM is so simple. 
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nal benefit.11 On the marginal costs side it is clear that once the data is in the computer, the 

marginal costs of another regression is next to nothing. On the marginal benefit side, it is also clear 

that fine empirical results increase the publication chance for the paper. As publications are crucial 

for the career of the researcher, the value is quite high. It is easy to reach intersection points such as 

J = 200. The only way to get lower values is to assume that the marginal benefits fall rapidly after 

some point such as J = 15. And as 10 estimates have to be chosen, it is possible that J per estimate 

stays under 50. 

Below I use J = 1, 2, 5, 10, 15, 23 34 and 50. I am confident that the upper end of this scale 

is more realistic. Fortunately, the results are rather stable for high values of such as J = 23 to 50. 

However, they move a lot for low values, so here the Js are closer together. 

It is assumed that the decision about J is already made when I turn to the indifference curves 

of the researchers. They are modeled by the variable, SR, which is the rule that selects one 

‘published’ result from the J estimates. Three SRs are considered: One altruistic and two rational. 

 

3.3 The baseline of an altruistic researcher, who looks for truth only 

The choice of a researcher who has a prior for truth and no other prior will chose SR0: 
 

SR0: The researcher selects the best estimate of the expected value of β. As the J estimates are the 

best ones the researcher has thought of, SR0 is the mean Jb  of the J estimates. It is also the 

expected value if the researcher decides to run one more regression. 
 

If truth is revealed in the long run, it may be rational – with that time horizon. In the meantime the 

researcher stands out as a guy who finds smaller and less significant estimates than other resear-

chers who have estimated β and who consequently are likely referees. They will not like the paper 

of the SR0-researcher, and mot editors will their referees. Sponsors, who want large coefficients, 

will look for more rational researchers. Hence, the truth seeker will disappoint both university 

appointment committees, who want publications, and administrators, who want sponsor money they 

can tax. This will have a negative impact on his career, so truth seeking is indeed altruistic. 

Economists acknowledge the existence of altruism, but normally it is found to be a minor 

factor in the behavior of people, and a dozen studies of the behavior of economists, see 

Kirchgässner (2005) for a survey, find that economists behave more in accordance with economics 

than other people. Also, Table 2 in section 4.2 shows that SR0 leads to results that are at variance 
                                                 
11. A crude attempt to evaluate the marginal costs and benefits are made in Paldam (2015c). 
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with the empirics as discussed. 

 

3.4 The two ends of the range of rational selections 

The other two SRs are extreme versions of the rational ones that follow from two main priors of the 

researchers: 
 

SR1: The first main prior is for fit. Researchers want the fit of the preferred estimate to be high, so 

the selection rule SR1 maximizes the t-ratio. 

SR2: The second prior is for size. Economic theory, moral/political beliefs and sponsor interests are 

taken to aggregate into a prior for size, so SR2 maximizes the size of the estimate. 
 

Most researchers want a compromise between the two extreme SRs. They are willing to trade some 

size for more fit and vice versa. So the two SRs give the limits of the rational choices. A key result 

in Paldam (2015b) is that the two SRs give similar results for the relevant statistics. This result 

generalizes below. The rationality bias is robust to all rational selection rules. 
 

 

Figure 1. The ideal funnel, with J = 1, in the central case 

 

 

 

 

 

 

 

 
Note: One of the 10,000 funnels in row (1) of Tables 2 to 4, which is the same. 

 

 

3.5 How should the simulated funnels look to be realistic? 

In simulations it is easy to generate ideal funnels where no censoring takes place. This happens 

when all estimates are published, i.e. for J = 1. An ideal funnel is symmetric and as wide as can be 

predicted from the average t-ratio of the estimates. Figure 1 is the ideal funnel in the central case. 

Rows (1) in Tables 2-4 are the statistics for 10,000 repetitions of this funnel. Hence, row (1) is the 
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same in the three tables, but as J rises the tables diverge. 

The funnel looks as the corresponding funnel in Paldam (2015b, Figure 5a), but the 

parameter heterogeneity makes the funnel a bit more top-heavy, and the extra variation of β also 

gives a little more variation. I have looked at many empirical funnels. My impression is that they 

have four properties: 
 

(p1) The estimated b’s are normally rather significant, i.e., t-ratios are high. 

(p2) The funnel is often amazingly wide given the level of precision. One explanation of the 

width is the variability of β as modeled. We measure the funnel width as the standard 

deviation, ν, of the N-set. 

(p3)  About 2/3 of all empirical funnels are asymmetric – this caused the various averages to 

differ. If the estimates deviate due to random noise – including the noise in β – the funnel 

should be symmetrical, and in that case ‘all’ averages are the same. Consequently, an expla-

nation of the asymmetry is needed. 

(p4) They normally have a narrower top than Figure 1. Thus, it appears that the choice of σβ is a 

rather large one. 
 

Note that (p2) and (p3) are combined in practice – empirical funnels are often wide and asymmet-

rical at the same time. The analysis below shows that the rational behavior or researchers generate 

funnel asymmetries at the same time as funnels keep their width. 
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4. Results: The central case 
 

In the central case (σβ
2, σx

2, σε
2) = (0.3, 2, 10) as already mentioned. Section 4.1 explains the format 

of the tables in the next 3 sections that cover the three SRs.  

 

4.1 The format of Tables 2 to 4 reporting the average results 

The expected/equilibrium values of the statistics reported are provided with a star ‘*’. Due to the 

many replications of the N-set, the averages are close to the expected values. 

The tables have nine rows: The first eight rows are for one J. The first row for J = 1 is 

always the same, as only one estimate can be selected when J = 1. When J increases, the three 

tables diverge. Row nine is an average giving a (crude) estimate of the outcome when authors use 

different Js. 

The tables have ten columns: Column (1) is the J-value; column (2) is the mean, b ≈ b*; 

and column (3) is t  ≈ t*. These means are averages of averages (i.e. over all 500∙R estimates) so 

they are very stable. The remaining statistics are averages of the R estimates only: (4) holds the 

average width that is also rather stable, ν ≈ ν*, of the funnel. 

The FAT-PET MRA is reported in columns (5) to (8). Here (5) is the average estimated 

FAT, Fb ≈ βF, while (6) counts how often the FAT rejects symmetry; (7) is the average estimated 

PET meta-average, Mb  ≈ βM, while (8) counts how often bM differs from 1, so that the PET fails to 

find the true value. While Fb is so stable that we can trust that Fb = bF*, the PET still has some 

variation, as discussed in section 5.4. 

The PEESE MRA is reported in columns (9) and (10). Column (9) gives the average meta-

average, Pb  ≈ βP, while (10) counts how often bS differs from 1, so that the PEESE fails to find the 

true value. The FAT-term from the PEESE is not reported as it is almost the same as the one in (5) 

and (6). The three count-columns (6), (8) and (10) use the 5% level of significance in the tests. 

Only SR1 is related to censoring, but it is actually rather different. Therefore, it is unknown 

how the PET and the PEESE react. However, both MRAs have been applied on empirical funnels 

generated by research processes that are likely to be (strongly) affected by rationality. 
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4.2 SR0: the baseline, where the selection is unbiased and the funnels are symmetric 

The baseline is the SR of the researcher with a prior for truth only. The results are reported in Table 

2. Column (5) shows that the average funnel in the table is symmetrical, so that all three averages b

, Mb and Pb should be 1, as is actually the case. Note also that the average t-ratios stay constant at 

3.15. When SR1 and SR2 are used t  rises with J. 

The counts in columns (6), (8) and (10) are all between 0.45 and 0.75, thus the FAT often 

rejects symmetry and the FAT and the PET fail to find the true value. This is due to the variation in 

β. When σε goes to zero, the three rejection rates fall to 0.05 as shown in Paldam (2015b). I return to 

this point in section 5.4. 

 
 

Table 2. Selection rule SR0, the ideal selection 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  Descriptive FAT-PET PEESE 
  Statistics FAT asym. test PET meta-avr. Meta-average 

Row J b  t  ν  Fb  Not 0 
M

b  Not 1 
P

b  Not 1 

(1) 1 1.001 3.152 0.504 0.001 0.729 1.001 0.631 1.001 0.574 
(2) 2 1.000 3.151 0.414 0.002 0.667 1.000 0.573 1.000 0.522 
(3) 5 1.000 3.150 0.348 -0.004 0.616 1.001 0.531 1.001 0.483 
(4) 10 0.998 3.146 0.322 -0.012 0.604 1.003 0.517 1.000 0.454 
(5) 15 0.999 3.148 0.315 -0.014 0.601 1.004 0.528 1.001 0.495 
(6) 23 1.000 3.151 0.307 -0.005 0.574 1.002 0.483 1.001 0.443 
(7) 34 1.000 3.149 0.305 0.002 0.588 0.999 0.499 1.000 0.450 
(8) 50 1.001 3.153 0.303 -0.001 0.556 1.001 0.451 1.001 0.405 
(9) Avr. 1.000 3.150 0.352 -0.004 - 1.001 - 1.001 - 

Note: R = 10,000 in rows (1) to (3) and R = 1,000 in rows (4) to (8). 

 
 

Column (4) reports the funnel width. It is a function of the variation in σε and σβ, and the selection 

rule: 
 

(3) ν = ν(J, σε, σβ, SRi), where i = 0, 1 and 2 
 

It is not easy to solve (3) analytically for SR1 and SR2, but it can be solved for SR0. Paldam (2015b) 

considers the case σβ = 0, and shows that the width ν(J) = ν(1)/√J. This gives a rather fast 

convergence for J rising. When σβ > 0, it enters as a minimum, to which the funnel width converges. 
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Thus, I expect that v(J) converges from ν(1) to σβ, as indeed it does in column (4) of Table 2. See 

also section 6.2. 

Thus, the selection rule SR0 causes the funnel width to fall as J increases. For small values 

of σβ, it even gets close to zero. This is not what we observe – refer to point (p2) in section 3.2. I 

conclude that few economists are as altruistic as assumed by SR0.  

 

4.3 SR1, selection by fit only 

Selection by t gives the results reported in Table 3. The average b in column (2) and t in column (3) 

both increase by J, but their ratio stays constant. The funnel width, ν, stays almost constant.  

The FAT increases from 0 to more than two. Thus, the funnel moves to the right and 

becomes more and more skew, while keeping its width. The change in the funnel as J raises is 

illustrated by comparing Figure 1 (for J = 1) to Figure 2a (for J = 10) and to Figure 2b (for J = 50). 

The parameter heterogeneity changes the funnels a little. It becomes a bit more top-heavy and the 

tail to the right becomes a bit less pronounced than in the case of σβ = 0. 

The key observation is that the PET works remarkably well as reported in column (7): It is 

always within 5% of the true value of β. This is much better than the PEESE that is ‘only’ half of 

the way between the mean and the true value. Once again it should be noted that both meta-

averages reject the true value surprisingly often. 

 
 

Table 3. Selection rule SR1, the best fit 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  Descriptive FAT-PET PEESE 
  Statistics FAT asym. test PET meta-avr. Meta-average 

Row J b  t  ν  Fb  Not 0 
M

b  Not 1 
P

b  Not 1 

(1) 1 1.001 3.152 0.504 0.001 0.729 1.001 0.631 1.001 0.574 
(2) 2 1.204 3.730 0.458 0.572 0.295 0.996 0.599 1.105 0.202 
(3) 5 1.414 4.351 0.446 1.173 0.013 0.993 0.573 1.213 0.009 
(4) 10 1.541 4.741 0.457 1.553 0.002 0.989 0.567 1.277 0.001 
(5) 15 1.609 4.953 0.466 1.754 0.000 0.989 0.577 1.312 0.000 
(6) 23 1.674 5.163 0.476 1.965 0.000 0.985 0.522 1.343 0.000 
(7) 34 1.729 5.338 0.489 2.152 0.000 0.978 0.541 1.368 0.000 
(8) 50 1.780 5.509 0.500 2.312 0.000 0.978 0.514 1.393 0.000 
(9) Avr. 1.494 4.617 0.475 1.435 - 0.988 - 1.251 - 

Note: Generated for the same regressions as Table 2. 
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Figure 2a. Funnel SR1, with J = 10   Figure 2b. Funnel SR1, with J = 50 

 

 

 

 

 

 

 
 

Note: One of the 1,000 funnels from rows (4) and (8), respectively, in Table 3. 

 
 

4.4 SR2, selection by size 

The second selection rule is by size alone. The results are reported in Table 4. They are almost the 

same as Table 3. As the selection is by size, the average mean raises a little more when J rises, and 

conversely the average t-ratio rises a little less. The effect of changing from SR1 to SR2 is 

surprisingly small. This will be further analyzed in section 5. The key result is, once again, that the 

PET works well. It is much better than the PEESE. The funnels from SR2 look so similar to the 

ones from SR1 that they are not worth showing. 

 
 

Table 4. Selection rule SR2, the largest size 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  Descriptive FAT-PET PEESE 
  statistics FAT asym. test PET meta-avr. Meta-average 

Row J b  t  ν  Fb  Not 0 
M

b  Not 1 
P

b  Not 1 

(1) 1 1.001 3.152 0.504 0.001 0.729 1.001 0.631 1.001 0.574 
(2) 2 1.209 3.717 0.459 0.569 0.289 1.000 0.600 1.109 0.186 
(3) 5 1.429 4.311 0.452 1.148 0.012 1.006 0.572 1.229 0.005 
(4) 10 1.567 4.675 0.468 1.498 0.001 1.013 0.561 1.305 0.001 
(5) 15 1.642 4.870 0.483 1.680 0.000 1.019 0.565 1.348 0.000 
(6) 23 1.716 5.060 0.501 1.867 0.000 1.021 0.543 1.389 0.000 
(7) 34 1.778 5.217 0.520 2.030 0.000 1.021 0.539 1.422 0.000 
(8) 50 1.838 5.369 0.539 2.162 0.000 1.028 0.492 1.457 0.000 
(9) Avr. 1.522 4.546 0.491 1.370 - 1.013 - 1.282 - 

Note: Generated for the same regressions as Tables 2 and 3.  
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By comparing Tables 3 and 4 it appears that the two selection rules, SR1 and SR2, produce results 

that are quite similar. In practice the reasonable researcher uses some compromise between SR1 and 

SR2, which is a weighted sum of the two choices. The fact that they are so similar means that it 

matters little if researchers use different weights, as further discussed in section 5. This is the 

mechanism (Mec 2) already announced in section 3.1. 
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5. Comparing results 
 

Section 5.1 compares the bias in the mean – that is the publication bias – while section 5.2 looks at 

the average estimate of the t-ratio. The bias in PET meta-average is covered in section 5.3. Section 

5.4 looks at the width of funnels. Note that the figures contain simulations for J = 3, 4 and 6 not 

reported in the Tables. 

 

5.1 The extreme choices: A preference for size only and for fit only 

Columns (2) in Tables 2 to 4 give the estimates of the mean as a function of J. The three columns 

are drawn as curves on Figure 3. Thanks to the large number of replications the curves are smooth. 

Thus I conclude that they are close to the expected values b*. When the true value β = 1 is 

subtracted a precise estimate of the publication bias appears. 

The SR0-curve is close to the horizontal axis at 1, indicating no publication bias as expected. 

But, the two extreme rational selection rules, SR1 and SR2, give bias as soon as J > 2. As expected 

it is always positive. It confirms the well-known results that the bias is in the direction of the prior. 

The bias reaches 40 % already for J = 5, and then it gradually goes to 80%. As SR2 chooses the 

largest estimate, the SR2 curve is at top, but the gap between the SR1 and SR2 is small. 

 
 

Figure 3. The paths of the publication bias for the mean 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Drawn for R = 1,000, except for low values J < 6, where R = 10,000.  
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5.2 The t-ratio  

Columns (3) in Tables 2 to 4 give the estimates of the t-ratio as a function of J. It is drawn on 

Figure 3. The curves look like the ones for the mean; however, now the three curves start at 3.152.12 

The curve for SR0 remains constant, while the curves for SR1 and SR2 rise. But compared to 

Figure 2 the order of the two curves is reversed. Now the SR1-curve is at the top, as expected. Note 

that the gap between the two curves remains narrow. Any realistic trade-off between the fit and the 

size causes an SR-line in the narrow gap between the two extremes. Thus, it hardly matters if the 

researcher optimizes the fit or the size of the estimate. 

 
 

Figure 4. The paths of the t-ratio 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Drawn for R = 1,000, except for low values J < 6, where R = 10,000. 

 
 

5.3 The width of the funnel 

Columns (4) in Tables 2 to 4 give the estimates of the funnel width calculated as the STD if the N-

set is a function of J. For SR0 the funnel width converges to 0.3, which is the standard deviation of 

the βs. This is, of course, precisely as section 3.2 argued that it should. The path of convergence is 

1/√J.   
                                                 
12. The starting value of 3.152 looks deceptively like the square root of σε = 10; but it is a more complex expression, 
and in section 5.3 it is 5.265 in the low case σε = 6, and 2.255 in the high case σε = 14. Thus, the higher the noise term, 
the lower is the average t- ratio, precisely as it should. 
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Figure 5. The width of the funnel 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Drawn for R = 1,000, except for low values J < 6, where R = 10,000. 

 
 

For both SR1 and SR2 ν stays remarkably stable. For SR2 the curve for ν  is always slightly 

above the one for SR1. For a realistic SR between SR1 and SR2, we expect that the funnel width 

curve is between the ones for SR1 and SR2. Thus, we know that when J rises all rational SRs cause 

the funnel to be skewer, but not leaner as I claimed is realistic in section 3.2. 

 

5.4 The bias of the PET 

Columns (7) in the three tables show the PET-estimate of β. Here the estimates cover ‘only’ R 

replications, so the estimates are not as precise as the ones for the mean. Also, the range on the 

vertical axis is 1/10 of the range on Figure 3. Thus, we finally see curves that are not perfectly 

smooth. However, the paths of the curves on Figure 4 are still rather clear. 

The most amazing finding is that the three PET-curves stay within 1 + 0.03 of the true value 

of β = 1. The PET was not designed to catch the biases in the case where the bias is due to the 

rationality of researchers, but the PET still does a fine job. However, it is not perfect. 

The PET does actually reject that β = 1 in about half of the cases. See columns (8) in the 

three tables. For σβ = 0 the rejection rate is about 20%, but for σβ = 0.3 the rejection rate increases to 

about 50%. So, I conclude that PET does get close to the true value of β, but in many cases it finds 

something that is not precisely true.  
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Figure 6a. The paths of the bias of the PET 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another interesting observation from Figure 6a is that when some researchers put more weight on 

the fit and others look more at the size, the PET bias curve will be between the SR1 and the SR2 

curves. The SR1-curve is below 1 and the SR2-curve is above 1 by almost the same magnitude. 

Therefore, the bias of the average will be very close to 1, and, thus, almost without bias. 
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6.  Experiments with the three variations using SR1 
 

Six experiments – listed in Table 6 – are made with low and high cases for the three variation 

parameters, σβ, σx and σε. The results are reported in Tables 7 to 9 in sections 6.1 to 6.3, 

respectively.  

 
 

Table 6. The three cases for three standard deviations 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
   Present paper Previous paper, Paldam (2015b) 
 Stochastic term Choice Draw Low Central High Draw Central Experiments 
(1) β = N(1, σβ

2) σβ One per paper 0.15 0.30 0.45 None Zero None 
(2) xt = N(0, σx

2) σx One per observation 1 2 3 As now 2 1, 1.5, 3, 4 
(3) εt = N(0, σε

2) σε One per observation 6 10 14 As now 10 None 
 
 

The experiments have generated 6 sets of tables corresponding to Tables 2 to 4. As the pattern in 

the estimates is unsurprising, the reporting is condensed into three tables. They cover the main 

results for SR1 only. Column (1) reports J as before. Then follow 3 sections with 3 columns each: 

The low case, the central case and the high case. The central case reported in columns (5), (6) and 

(7) is the same as in Table 3. 

 

Table 7. The experiments with σβ
2 the variation of β 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Low case σβ = 0.15 Central case σβ = 0.3 High case σβ = 0.45 

Row J b  M
b  v  b  M

b  v  b  M
b  v  

(1) 1 1.000 1.008 0.434 1.001 1.001 0.504 1.003 1.020 0.603 

(2) 2 1.203 0.978 0.382 1.204 0.996 0.458 1.202 0.969 0.566 

(3) 5 1.415 0.986 0.369 1.414 0.993 0.446 1.415 1.016 0.551 

(4) 10 1.544 0.971 0.384 1.541 0.989 0.457 1.544 0.996 0.559 

(5) 15 1.609 0.972 0.396 1.609 0.989 0.466 1.606 1.012 0.57 

(6) 23 1.674 0.968 0.409 1.674 0.985 0.476 1.671 1.011 0.574 

(7) 34 1.727 0.964 0.423 1.729 0.978 0.489 1.721 1.014 0.579 

(8) 50 1.779 0.956 0.434 1.780 0.978 0.500 1.775 1.004 0.588 

(9) Avr. 1.494 0.975 0.404 1.494 0.988 0.475 1.492 1.005 0.574 
Note: The central case is from Table 4. The low and the high case is run for R = 500.   
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6.2 The experiments with σβ the variation in β 

Table 7 shows that σβ has no effect on the publication bias. This was expected from the above 

analysis, but the confirmation is still important. 

It is also reassuring to see that the change on σβ has only a small effect on the PET meta 

average. The value σβ = 0.3 was chosen to be large, so σβ = 0.45 is very large. But the PET still 

stays within 2% of the true value, for all Js. However, the value of σβ does influence the funnel 

width, ,ν which rises with σβ as it should. 

 

6.3 The experiments with σx
2, the variation term for the explanatory variable 

Table 8 shows that the higher the variation term of the explanatory variable, the lower is the bias. 

However, the PET-meta average catches the true value rather well in any case. In all three cases the 

funnel width remains rather constant when J changes, though its size depends upon σx. This result 

should be seen in connection with the results in Table 9, where the noise term in the estimating 

equation σε varies. 

 
 

Table 8. The experiments with σx, the variation of x 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Low case σx = 1 Central case σx = 2 High case σx = 3 

Row J b  M
b  v  b  M

b  v  b  M
b  v  

(1) 1 1.000 1.015 0.867 1.001 1.001 0.504 1.002 1.014 0.402 

(2) 2 1.413 0.969 0.763 1.204 0.996 0.458 1.132 0.975 0.377 

(3) 5 1.846 0.995 0.737 1.414 0.993 0.446 1.269 1.003 0.366 

(4) 10 2.114 0.969 0.771 1.541 0.989 0.457 1.351 0.988 0.371 

(5) 15 2.250 0.974 0.799 1.609 0.989 0.466 1.391 0.997 0.378 

(6) 23 2.386 0.967 0.828 1.674 0.985 0.476 1.432 0.997 0.379 

(7) 34 2.497 0.960 0.858 1.729 0.978 0.489 1.464 0.998 0.382 

(8) 50 2.606 0.946 0.886 1.780 0.978 0.500 1.498 0.991 0.387 

(9) Avr. 2.014 0.974 0.814 1.494 0.988 0.475 1.317 0.995 0.380 
Note: The central case is from Table 4. The low and the high case is run for R = 500. 

 

6.4 The experiments with σε, the noise term in the estimating equation 

Table 9 shows the reverse pattern of the one in Table 8. The higher the variation term of the 
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explanatory variable, the higher is the bias. However, the PET-meta average still catches the true 

value rather well. 

 
 

Table 9. The experiments with σε
2, the variation in the model residuals 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Low case σε = 6 Central case σε = 10 High case σε = 14 

Row J b  M
b  v  b  M

b  v  b  M
b  v  

(1) 1 1.002 1.013 0.384 1.001 1.001 0.504 1.001 1.015 0.643 

(2) 2 1.117 0.975 0.363 1.204 0.996 0.458 1.287 0.970 0.575 

(3) 5 1.239 1.004 0.353 1.414 0.993 0.446 1.588 0.996 0.556 

(4) 10 1.312 0.990 0.356 1.541 0.989 0.457 1.773 0.974 0.577 

(5) 15 1.347 1.000 0.361 1.609 0.989 0.466 1.866 0.980 0.595 

(6) 23 1.383 1.000 0.362 1.674 0.985 0.476 1.959 0.976 0.611 

(7) 34 1.411 1.002 0.364 1.729 0.978 0.489 2.035 0.972 0.629 

(8) 50 1.442 0.995 0.368 1.780 0.978 0.500 2.110 0.961 0.647 

(9) Avr. 1.282 0.997 0.364 1.494 0.988 0.475 1.702 0.980 0.604 
Note: The central case is from Table 4. The low and the high case is run for R = 500. 

 
 

The funnel width, ,ν  falls when σε rises. This might appear counterintuitive at a first look. 

However, it tallies well with the fact that the bias falls. Thus, Tables 8 and 9 show that it is the 

relation between σx and σε that matters: If σx is small and σε is large, it will result in wide funnels 

and vice versa. As empirical funnels are surprisingly wide, the choice of a much smaller variation σx 

than σε is realistic. 

The three sets of experiments with the variation variables σβ, σx and σε show a rather simple 

pattern that is easy to interpolate and extrapolate to the range of interest. The three key observations 

are that when J > 1: (i) The rational researcher always produces a bias. (ii) When the researchers 

want positive estimates the bias is always positive. (ii) The PET always greatly reduces that bias. 
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7. Conclusions: Rational researchers produce publication bias 
 

This paper simulates the empirical literature about an important parameter, β, which is characterized 

by its size and fit (t-ratio). The analysis assumes that researchers behave rationally as predicted by 

economic theory. The key variables that need to be modelled are J, the number of estimates made 

per estimate published, and SR, the selection rule used to choose the published estimate. For both 

choices economics make a clear prediction. 

J will be chosen where the marginal cost of an extra regression equals the marginal benefit. 

At low values of J the marginal costs are much lower than the marginal benefits. Consequently, 

authors typically have to choose the regressions published from the much larger set of regressions 

produced. The optimal choice is where the author’s production possibility frontier touches his 

utmost indifference curve. 

It is assumed that the β-literature consists of N = 500 estimates that are clustered in papers 

that report 10 estimates each. The 10 estimates are reported to show the robustness of the main 

result. The parameter, β, has a central value of 1, but it is allowed to vary randomly between papers, 

so the literature has parameter heterogeneity. It means that the estimates vary less within papers 

than between papers. 

A previous study assumed that the 500 estimates are independent. It reached three key 

results: (r1) When J is larger than one, all rational selection rules produce a bias, which is often 

substantial. The bias is in the direction of the priors of the researcher. (r2) The bias is almost the 

same irrespective of the weight the researcher places on fit and size. (r3) When the set of estimates 

of the same parameter is treated by the tools of meta-analysis it allows us to see if a bias occurs, and 

the PET estimate reduces the bias by more than 90%. These results generalize to parameter 

heterogeneity. Two additional results have been found: The reason given by authors for publishing 

10 estimates is that it shows the robustness of the main result. (r4) This paper shows that the bias 

survives as long as the number of estimates per published one is larger than 1. What matters for the 

bias is the number of estimates made per published one, not the number of estimates published. 

(r5) Parameter heterogeneity makes it more likely that the PET rejects the true value of β = 

1, but the rejections are to either side with almost the same probability, so the PET is still a fine 

estimate of the true value.   
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