Net Appendix to:

How do partly omitted control variables influence the averages used in meta-analysis in economics?

Martin Paldam, ${ }^{1}$ Department of Economics and Business, Aarhus University, Denmark

Content:

Section Page
1 Introduction 2Table 1
2 The ideal funnel and censoring 4Table 2 and 7 Figures 2a to 2 g
3 Experiments with the correlation ρ and the effect of POC1 5
Table 3 and 5 Figures 3 a to 3 e
4 Experiments with the inclusion frequency q and the effect of POC2 12
Table 4 and 5 Figures 4 a to 42
5 Combinations of DGPs and EMs: First set of experiments 15Table 5 and 9 Figures 5a and 5i
6 Censoring the cases with POCs 16Table 6 and 9 Figures 6a to 6 i
7 Combinations of DGPs and EMs: Second set of experiments 21
Table 7 and 9 Figures 7a and 7i
8 The simulation program 24Tables 8a and 8b
9 Conclusions 26

Acknowledgment and notes: The simulation program used is written by Jan Ditzen. This paper contains no references - they are given in the main paper. For easy cross reference the table (tables) and the figures in each section has the same number as the section.

[^0]
1. Introduction

The main paper studies some problems by simulation experiments. However, many more simulations have been needed to study these problems. This appendix documents all 182 simulation experiments made. Each experiment needs $N \times R$ regressions, which is N "primary" regressions for one funnel, and R funnels reach a precise average. This is done with a set of programs outlined in section 8 below. They have three loops within each other: An inner regression loop, a middle funnel loop and an outer experiment loop.

One funnel is a representation of the distribution of N simulated average estimates of the parameter $\beta=0.25$. The averages over one funnel are $\underline{b}, \beta_{M}, \beta_{A R}$ and $\beta_{A W}$. They are defined in the paper and in Table 1. Over a full experiment the averages are $\underline{b}_{a}, \underline{\beta}_{\underline{M}}, \underline{\beta}_{\underline{A R}}$ and $\underline{\beta}_{A W}$. Since we know the true value, we can study the fit of the 4 average estimates.

Table 1. The DGP and EM, and the main parameters

The (DGP, EM) pair, x is variable of interest z_{1} and z_{2} are the POCs and ε is noise				
	DGP, data generating process	EM, estimating model	Variables	
(1)	$y_{i}=\beta x_{i}+\varepsilon_{i}$	$y_{i}=b_{i} x_{i}+u_{i}$	y_{i}	Dependent variable
(2a)	$y_{i}=\beta x_{i}+\gamma_{1} \mathrm{z}_{1 \mathrm{i}}+\varepsilon_{i}$	$y_{i}=b_{i} x_{i}+g_{1} \omega_{1 i} \mathrm{z}_{1 \mathrm{i}}+u_{i}$	x_{i}	Variable of interest
(2b)	$y_{i}=\beta x_{i}+\gamma_{2} \mathrm{z}_{2 \mathrm{i}}+\varepsilon_{i}$	$y_{i}=b_{i} x_{i}+g_{2} \omega_{2 i} \mathrm{z}_{2 \mathrm{i}}+u_{i}$	$z_{1 i}$	POC1, control variable
(3)	$y_{i}=\beta x_{i}+\gamma_{1} \mathrm{z}_{1 \mathrm{i}}+\gamma_{2} \mathrm{z}_{2 \mathrm{i}}+\varepsilon_{i}$	$y_{i}=b_{i} x_{i}+g_{1} \omega_{1 i} \mathrm{z}_{1 \mathrm{i}}+g_{2} \omega_{2 i} \mathrm{z}_{2 \mathrm{i}}+u_{i}$	$z_{2 i}$	POC2, control variable

The parameters: β is fixed at 0.25 , while $\gamma_{1}, \gamma_{2}, \rho$ and q are varied

β	Parameter of interest $\beta=0.25$	b_{i}	Estimate of β
ε	Generated noise term	u_{i}	Estimated residual
γ_{1}	Effect of POC1, z_{1}, in DGP	$g_{i 1}$	Estimate of γ_{1}
γ_{2}	Effect of POC2, z_{2}, in DGP	$g_{i 2}$	Estimate of γ_{2}
q	Inclusion probability for the POCs	ω, φ	Binary inclusion/exclusion vector $\omega_{i}+\varphi_{i}=1$

$\rho \quad$ Correlation of x and the POCs. When $\rho \neq 0$ POC biases occurs

Averages from			Conventions used in tables	
Funnel	Exprm.		R	Number of funnels in each experiment
\underline{b}	$\underline{b}_{\mathrm{a}}$	Arithmetic mean	N	Number of regressions run for the funnel
β_{M}	$\underline{\beta}_{\underline{M}}$	PET, meta average	M	Sample size for estimate, $M=20,21, \ldots, 19+N$
$\beta_{A R}$	$\underline{\beta}_{A R}$	Rightly augmented m.a.	$A v s^{\text {a }}$	Count of not rejected estimates of $\beta=0.25$ at 5%
$\beta_{A W}$	$\underline{\beta}_{A W}$	Wrongly augmented m.a.	$F s$	Count of FATs showing no asymmetry at 5% level

Averages within 5% of the true β are bolded. This is estimates between and 0.237 and 0.263

[^1]The simulations of each primary regression use a (DGP, EM)-pairs, where the DGP is the data generating process, and EM is the estimating model. Table 1 gives the four DGPs and EMs used. Equation (1) is used in section 2 only. Sections 3 and 4 use the same (DGE, EM)-pair and vary the four variable parameters: $\gamma_{1}, \gamma_{2}, \rho$ and q. Sections 5 to 7 looks at the realistic situation where the researcher does not know the DGP, so that the (DGE, EM)-pair often differ. Here only the possibilities (2a), (2b) and (3) are permitted. This gives $3 \times 3=9$ combinations, where only 3 have the same DGP and EM.

All results are from simulated funnels with $N=500$ points, where each is estimated by a regression on simulated data. The main paper reports average results from $R=1,000$ simulated funnels per line in the tables. Although high R s gives a high precision, it is not necessary to see the pattern in the results, when the parameters are varied, so all lines in the tables below are average results from only $R=100$ simulated funnels. This means that each line is estimated from 100×500 $=50$ ' 000 regressions. The average estimate is bolded if it is within 5% of the true value $\beta=0.250$, so bolded averages are between 0.237 and 0.263 .

The three averages $\beta_{M}, \beta_{A R}$ and $\beta_{A W}$ are estimated, so they come with a t-ratio and with a funnel asymmetry test FAT, $\beta_{F}, \beta_{F R}$ and $\beta_{F W}$ respectively. For each pair $\left(\beta_{x}, \beta_{F x}\right)$ it is tested if $\beta_{x} \approx \beta$ and $\beta_{F x} \approx 0$ at the 5% level of significance, by the two counts $A v s_{x}$ and $F s_{x}$, which are both a number between zero and R. The results for each experiment are 10 statistics: ($\underline{b}_{\underline{a}}, \underline{\beta}_{\underline{M}}, A v s_{1}, F s_{1}$, $\left.\underline{\beta}_{A R}, A v s_{2}, F s_{2}, \underline{\beta}_{A W_{2}} A v s_{3}, F s_{3}\right)$. They are presented as a row in a table. Some of these rows are illustrated by a graph typically covering one funnel allowing the readers (and the author) to see what is going on. By using $R=100$ the two counts become becomes integers in \%. As we are using the 5% level of significance throughout, a result is fine if $A v s \approx F s \approx 95$. For most bolded averages Avs and $F s$ are about 95 . They are often a bit lower, pointing to the power of the tests.

The N regressions for each funnel are made on simulated data with sample size $M=20,21$, $22, \ldots, N+20$. The changing sample size gives variation in the precision of the estimates, as needed for realistic funnels. When some estimates are censored and N is increased, the last regressions have a higher sample size. Thus, the top of the censored funnels have higher precisions the larger the censoring is. This is likely to be realistic.

Most funnels in models with one or two POCs have two tops. The augmentations make one or the other top go away. Since both POCs are generated by the same distribution, they both give the same FAT, when the other is deleted. This is confirmed by all tables below. Thus, the fact that the FAT is fine only means that a nice symmetrical funnel has been generated. It might be the right or the wrong one.

2. The ideal funnel and censoring

The first simulations looks at the case where DGP $=\mathrm{EM}=1$, so formally the model contains no POCs. This is taken to cover a situation with many randomly included POCs. The variation in the estimates is generated by ε, and the different sample sizes. The results are reported in Table 2. Since there is no (formal) POCs there is only one possible meta average. It has two panels:

Table 2. The ideal funnel in row (1) and 11 cases of censoring

Panel A: Cases of censoring with $\varepsilon=2$: Censoring is: none, $-0.2,-0.15, \ldots, 0.40$													
Row	$\begin{gathered} \text { Censo- } \\ \text { ring } \end{gathered}$	N	Averages		Accept true		Row	$\begin{gathered} \text { Censo- } \\ \text { Ring } \end{gathered}$	N	Averages		Accept true	
			\underline{b}_{a}	$\underline{\beta}_{\underline{M}}$	Avs	Fs				\underline{b}_{a}	$\underline{\beta}_{\underline{M}}$	Avs	Fs
(1)	None	500	0.250	0.248	92	89	(8)	0.10	850	0.275	0.212	2	0
(2)	-0.20	550	0.253	0.246	93	89	(9)	0.15	900	0.287	0.212	0	0
(3)	-0.15	600	0.258	0.235	81	78	(10)	0.20	950	0.308	0.225	12	0
(4)	-0.10	650	0.258	0.232	75	72	(11)	0.25	1000	0.338	0.250	94	0
(5)	-0.05	700	0.261	0.227	61	41	(12)	0.30	1200	0.379	0.287	0	0
(6)	0	750	0.263	0.223	36	19	(13)	0.35	1700	0.427	0.331	0	0
(7)	0.05	800	0.268	0.217	12	02	(14)	0.40	2500	0.497	0.374	0	0

Panel B: Cases of censoring at 0.25 , for $\mathrm{N}=1000$, with $\varepsilon=0.5,1,2,3,4,5,6$ and 7

Row	Noise	Averages			Accept true			Row	Noise	Averages			Accept true		
	ε	\underline{b}_{a}	$\underline{\beta}_{\underline{M}}$	$\underline{b}_{a} / \underline{\beta}_{\underline{M}}$	$A v s$	Fs		ε	\underline{b}_{a}	$\underline{\beta}_{\underline{M}}$	$\underline{b}_{a} / \underline{\beta}_{\underline{M}}$	$A v s$	$F s$		
(1)	0.5	0.272	$\mathbf{0 . 2 5 0}$	1.088	94	0	(5)	4	0.427	$\mathbf{0 . 2 5 1}$	1.703	94	0		
(2)	1	0.294	$\mathbf{0 . 2 5 0}$	1.176	94	0	(6)	5	0.471	$\mathbf{0 . 2 5 1}$	1.878	94	0		
(3)	2	0.338	$\mathbf{0 . 2 5 0}$	1.352	94	0	(7)	6	0.515	$\mathbf{0 . 2 5 1}$	2.053	94	0		
(4)	3	0.383	$\mathbf{0 . 2 5 1}$	1.528	94	0	(8)	7	0.560	$\mathbf{0 . 2 5 1}$	2.228	94	0		

Note: N includes the censored, so N has to be higher than 500 to give 500 funnel points, in rows (2) to (14) in Panel A, and in all experiments of Panel B. Recall that averages within 5% of the true value 0.250 are bolded.

Figure 2. Illustrations of the funnels in Panel A of Table 2

Figure 2a. Line (1): The ideal funnel

Figure 2b. Line (6): Censoring at zero

Figure 2c. Line (9): Censoring at 0.15
Figure 2d: Line (11): Censoring at 0.25

Figure 2f. The bias of the mean and the PET

Panel A: Row (1) is the ideal case, with no censoring. It has virtually the same mean $\underline{b}=0.250$ and PET $\beta_{M}=0.248$. Figure 2 a shows a specimen of an ideal funnel with these parameters. It is symmetrical and has one peak.

The mean and the PET-average, β_{M}, included on the figure are from Table 2. Thus, it is more precise than the estimates given on the funnel. This practice is used in all funnels shown.

Rows (2) to (14) report gradually more censored versions of the funnel: This is taken to cover the case where the random inclusion of the POCs becomes increasingly systematic. To get approximately 500 points in the funnel, when some points are censored, N is increased - this causes the number of observations in the regressions to increase so precision increases.

As long as the censoring is moderate the mean may still be closer to $\beta=0.25$. But as the censoring increases the mean moves away from β, while the PET meta-average becomes better. The point where the PET becomes the best average is about halfway between zero and $\beta(=0.25)$. The

PET is perfect, when the censoring is in the middle of the distribution, i.e., at β. For censoring above β both averages quickly turns bad, but the PET is still the best. It is no wonder that it is difficult to catch the true average in such cases of extreme censoring, see Figure 2e, where there is nothing left of the peak for the PET to converge too.

Figure 2 f shows the two averages as functions of the point of censoring. It only uses the averages reported in Table 2, so the curves are not perfectly smooth. From the small "kinks" on the curve we conclude that the estimates based on 100 funnels have an uncertainty of ± 0.01, which is fine for the purpose of this appendix.

Panel b: The reader will note that when the censoring at exactly $\beta=0.25$, gives a PET metaaverage of 0.250 that is precisely right. The panel show that this generalizes for all values of ε.

If the economic theory and beliefs are right then surely the researcher wants to find an estimate that is at β or above. Thus, it is likely that the point of censoring is close to the true value for β, which is 0.25 . Thus, the PET meta-average might be the perfect average.

Figure 2g. Illustration of the funnels in Panel B of Table 2

The results also show that the publication bias (defined as $\beta_{M}-\underline{b}$) is proportional to the width of the funnel as measured by ε. This is illustrated on figure 2 g . The PET-line is the same as the 0.25 gridline and the mean is a straight line that starts in 0.250 for $\varepsilon=0$.

The folk theorem that the expected relative publication bias found in a meta-study is 2 , so that the ratio $\underline{b}_{a} / \underline{\underline{B}}_{\underline{\underline{ }}}=\underline{b}_{a} / \underline{B}_{\underline{M}} \beta=2$, so that $\underline{b}_{a}=0.5$, occurs at approximately $\varepsilon=5.67$, which is a rather wide funnel.

3. Experimenting with the correlation ρ and the effect of POC1

The present and the next section show a set of experiments with four variable parameters: $\gamma_{1}, \gamma_{2}, \rho$ and q. To get as many possibilities both sections uses the (DGP, EM)-pair of $(3,3)$ where all four parameters are at play. As the two POCs have error terms of 1 , the noise term $\varepsilon=1$. This makes the funnels about as wide as the ones in section 2, but now most are two-topped due to the POC biases.

The present section fixes q and γ_{2} at 0.5 and -0.5 respectably. Table 3a shows results, where ρ and γ_{1} are varied. The correlation ρ between x and z_{1} takes 6 values: $\rho=0.75,0.5,0.25,0,-0.25$ and -0.5. The effect, γ_{1}, of z_{1} in the DGP takes 7 values: $\gamma_{1}=-0.75,-0.50,-0.25,0,0.25,0.5$ and 0.75. This gives the $6 x 7$ lines in the table. Due to the results for the PET meta-average the range for γ_{1} is extended to 2.5 in Table 3 b .

The calculations have an imposed symmetry: q and ρ are the same. Hence, the two POCs cancel out, when $\gamma_{1}=-\gamma_{2}$. This imposed symmetry is used to check the calculations. In the case of the present section γ_{2} is fixed at -0.5 , so it happens when γ_{2} is -0.5 as well. Note that in the cases where this condition holds all averages are at the true value $\beta=0.25$. This gives a line with bolded averages for each value of ρ. The table has five sections as indicated by the shading. Section 1 gives the values of the two parameters. The remaining sections report an average:

The first average in (3) is the (arithmetic) mean. Then follow 2 augmented meta averages: The rightly augmented in (4) and the wrongly augmented in (7). As $q=0.5$ we know from the main paper that when there is no censoring the mean is the average of the rightly and the wrongly augmented averages. This holds rather well. Finally, (10) is the PET meta-average. It is typically the worst of the four averages, as discussed in the paper. Also, note that when $\rho=0$, the POCs are irrelevant for the term of interest in the DGP. It only matters what x is. Hence, all estimates of β when $\rho=0$, are true, and hence bolded.

The EM is $y_{i}=b_{i} x_{i}+g_{1} \omega_{1 i} \mathrm{Z}_{1 \mathrm{i}}+g_{2} \varphi_{2 i} \mathrm{z}_{2 \mathrm{i}}+\varepsilon_{i}$. We want the meta-average to include the POCs in the cases where they are excluded. Hence, when I use to use the exclusion vectors φ_{1} and ω_{2} in the right augmentation and the reverse augmentation is the wrong one.

The main pattern in the numbers calculated is shown on Figures 3a to 3d. They show the bias, which is the average minus 0.250 , for the 6 values of ρ. Due to the symmetries imposed all six ρ-lines on the 4 graphs intersect at zero, and the line for $\rho=0$ is horizontal.

Figure 3c shows that the right augmentation works rather well.

Table 3a. Experiments with ρ and γ_{1} - the main range

$\begin{gathered} \hline(1) \\ \text { For } \\ \rho \end{gathered}$	$\begin{gathered} \hline(2) \\ \text { POC1 } \\ \gamma_{1} \end{gathered}$	$\begin{gathered} (3) \\ \text { Mean } \\ \underline{b}_{a} \end{gathered}$	(4) (5) (6)Right augmentation			(7) (8) (9)Wrong augmentation			(10) $\quad(11) \quad(12)$PET meta average		
			$\beta_{\underline{A R}}$	Avs	Fs	$\beta_{A W}$	Avs	Fs	$\underline{B}_{\underline{M}}$	Avs	Fs
0.75	-0.75	0.156	0.250	94	96	0.062	0	96	-0.009	0	0
	-0.5	0.250	0.250	93	96	0.250	97	96	0.249	98	99
	-0.25	0.344	0.250	93	95	0.437	0	95	0.511	0	0
	0	0.438	0.250	94	95	0.625	0	95	0.774	0	0
	0.25	0.533	0.251	95	95	0.812	0	95	1.036	0	0
	0.5	0.627	0.251	95	95	1.000	0	95	1.294	0	0
	0.75	0.721	0.251	95	95	1.188	0	95	1.539	0	0
0.50	-0.75	0.187	0.249	95	95	0.124	0	95	0.179	0	97
	-0.50	0.250	0.249	94	95	0.249	97	95	0.249	96	96
	-0.25	0.313	0.250	94	95	0.374	0	95	0.365	0	4
	0	0.375	0.250	94	94	0.499	0	94	0.492	0	0
	0.25	0.438	0.250	96	95	0.624	0	95	0.597	0	0
	0.50	0.501	0.250	96	95	0.749	0	95	0.643	0	6
	0.75	0.563	0.250	95	94	0.874	0	94	0.601	0	97
0.25	-0.75	0.219	0.249	94	93	0.187	0	93	0.253	96	21
	-0.50	0.250	0.250	92	92	0.250	94	92	0.250	93	89
	-0.25	0.282	0.250	92	91	0.313	0	91	0.270	50	85
	0	0.313	0.250	92	91	0.376	0	91	0.300	4	88
	0.25	0.345	0.250	92	91	0.438	0	91	0.311	5	61
	0.50	0.376	0.250	92	93	0.501	0	93	0.288	58	0
	0.75	0.408	0.250	94	95	0.564	0	95	0.231	87	0
0	-0.75	0.250	0.250	91	90	0.249	92	90	0.250	89	88
	-0.50	0.250	0.250	90	89	0.250	92	89	0.250	89	88
	-0.25	0.250	0.250	88	89	0.250	92	89	0.250	90	88
	0	0.250	0.250	88	89	0.250	91	89	0.250	89	88
	0.25	0.250	0.250	90	90	0.250	90	90	0.250	90	88
	0.50	0.250	0.250	90	91	0.250	91	91	0.249	91	91
	0.75	0.250	0.250	91	92	0.250	92	92	0.249	93	92
-0.25	-0.75	0.281	0.250	97	95	0.312	0	95	0.246	98	18
	-0.50	0.250	0.250	97	94	0.250	94	94	0.250	96	96
	-0.25	0.219	0.250	95	94	0.187	0	94	0.230	53	79
	0	0.187	0.250	96	94	0.125	0	94	0.202	7	82
	0.25	0.156	0.250	96	93	0.062	0	93	0.191	6	55
	0.50	0.125	0.250	95	93	0.000	0	93	0.215	61	1
	0.75	0.100	0.250	96	92	-0.050	0	92	0.259	99	0
-0.50	-0.75	0.314	0.251	96	94	0.376	0	94	0.322	0	96
	-0.50	0.251	0.251	94	94	0.251	94	94	0.251	96	95
	-0.25	0.188	0.251	94	95	0.126	0	95	0.135	0	7
	0	0.125	0.251	95	93	0.001	0	93	0.007	0	0
	0.25	0.062	0.251	96	94	-0.124	0	94	-0.098	0	0
	0.50	-0.002	0.252	96	93	-0.249	0	93	-0.144	0	1
	0.75	-0.052	0.252	96	93	-0.348	0	93	-0.119	0	80

Note: DGP = EM $=3, \beta=0.25, N=500, R=100, \gamma_{2}=0.5$ and $q=0.5$.

Table 3b. Experiments with ρ and $\gamma_{1}-$ extension of the table

(1) For ρ	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	POC1	Mean	Rig	ugme		Wr	augm			eta a	
	γ_{1}	\underline{b}_{a}	$\underline{\beta}_{A R}$	Avs	Fs	$\underline{\beta}_{\text {AW }}$	Avs	Fs	$\underline{\beta}_{\underline{M}}$	Avs	Fs
0.75	0.80	0.739	0.250	95	94	1.225	0	94	1.585	0	0
	0.85	0.758	0.250	95	94	1.262	0	94	1.630	0	0
	0.90	0.777	0.250	94	90	1.300	0	94	1.674	0	0
	1	0.814	0.250	95	94	1.375	0	94	1.756	0	0
	1.5	1.002	0.250	96	95	1.750	0	95	1.994	0	0
	2	1.190	0.250	96	94	2.125	0	94	1.790	0	0
	2.5	1.378	0.250	96	94	2.501	0	94	1.136	0	77
0.50	0.80	0.576	0.250	94	93	0.899	0	93	0.581	0	100
	0.85	0.588	0.250	94	93	0.924	0	93	0.558	0	97
	0.90	0.601	0.250	94	93	0.949	0	93	0.531	0	85
	1	0.626	0.250	94	92	0.999	0	92	0.468	0	26
	1.5	0.751	0.250	94	90	1.249	0	90	0.087	22	0
	2	0.876	0.250	94	89	1.499	0	89	-0.200	0	0
	2.5	1.001	0.250	93	89	1.750	0	89	-0.350	0	0
0.25	0.80	0.413	0.251	95	95	0.577	0	95	0.218	77	0
	0.85	0.419	0.251	95	96	0.589	0	96	0.204	49	0
	0.90	0.426	0.251	95	96	0.602	0	96	0.190	21	0
	1	0.438	0.251	95	95	0.627	0	95	0.163	2	0
	1.5	0.501	0.251	96	97	0.753	0	97	0.056	0	0
	2	0.564	0.252	96	96	0.879	0	96	0.007	0	0
	2.5	0.626	0.252	95	94	1.005	0	94	-0.012	0	0
0	0.80	0.250	0.250	93	93	0.250	92	93	0.250	93	95
	0.85	0.250	0.250	93	93	0.250	92	93	0.250	93	95
	0.90	0.250	0.250	93	94	0.250	92	94	0.250	94	96
	1	0.250	0.250	92	94	0.251	94	94	0.249	94	96
	1.5	0.250	0.250	93	94	0.251	94	94	0.249	94	93
	2	0.251	0.250	94	94	0.251	95	94	0.249	94	93
	2.5	0.251	0.250	94	94	0.251	95	94	0.249	95	95
-0.25	0.80	0.087	0.251	95	93	-0.075	0	93	0.286	65	0
	0.85	0.081	0.251	95	93	-0.087	0	93	0.200	40	0
	0.90	0.074	0.251	95	93	-0.100	0	93	0.314	14	0
	1	0.062	0.251	95	93	-0.125	0	93	0.341	0	0
	1.5	-0.001	0.251	95	96	-0.249	0	96	0.447	0	0
	2	-0.063	0.251	97	96	-0.374	0	96	0.495	0	0
	2.5	-0.126	0.251	97	96	-0.499	0	96	0.514	0	0
-0.50	0.80	-0.077	0.252	95	94	-0.398	0	94	-0.084	0	98
	0.85	-0.090	0.252	95	94	-0.423	0	94	-0.061	0	98
	0.90	-0.103	0.252	95	94	-0.448	0	94	-0.034	0	88
	1	-0.128	0.252	95	93	-0.498	0	93	0.029	1	23
	1.5	-0.254	0.253	95	91	-0.747	0	91	0.410	15	0
	2	-0.380	0.253	95	94	-0.996	0	94	0.700	0	0
	2.5	-0.506	0.253	95	95	-1.245	0	95	0.851	0	0

[^2]Figure 3. The pattern of biases in Table 3: The deviations of the four averages from $\beta=0.25$

Figure 3a. Bias of the mean

Figure 3c. Bias of $\beta_{A R}$ (note scale)

Figure 3b. Bias of $\beta_{M}-$ see Figure 3e

Figure 3d. Bias of $\beta_{A W}$

Figure 3 e . Extended version of Figure 3b

Given the observations above, it is easy to interpret Figures 3d. Here the bias become worse the larger the deviation is from the imposed symmetry conditions, i.e., the more γ_{1} deviate from -0.5 and the larger numerical value of ρ is. It is also easy to see that all points on Figure 3a are the average of the corresponding points on figures 3 c and 3 d .

The interesting curve to interpret is Figure 3b for the PET. Here the curves for ρ bend. This is why Table 3b was calculated covering the range where the bend occurs and the high end. The 4 extended version of Figure 3b is shown as Figure 3e.

The Figure show that when the POC becomes really powerful in the DGP it comes to dominate in the relation.

4. Experiments with the inclusion frequency q and the effect of POC2

The present section fixes ρ and γ_{1} at 0.5 and -0.5 respectably. Table 3 shows results, where q and γ_{2} are varied. The inclusion probability for the POCs takes 6 values: $q=0.9,0.8,0.65,0.35$ and 0.2 . The effect of z_{2} in the DGP takes 7 values: $\gamma_{1}=-0.7,-0.5,-0.3,0,0.3,0.5$ and 0.7 . This gives the $6 x$ 7 lines in the table.

The averages are shown on Figure 4 that is constructed as Figure 3. Once again the three of the graphs are easy to interpret; while Figure 4b shows that the PET meta-average bends, though in a more simple way than in Figure 3b. As q varies the weights of the two peaks in the mean varies, so even when the wrong augmentation in figure 4 d has some lines that overlaps, it still give different lines in Figure 4a.

Figure 4. The pattern in Table 4: The deviations of the four averages from $\beta=0.25$

Figure 4 a . Bias of the mean

Figure 4c. Bias of $\beta_{A R}$ (note scale)

Figure 4b. Bias of β_{M}-- see Figure 4 e

Figure 4d. Bias of $\beta_{A W}$

Table 4. Experiments with q and γ_{2} - the main range

$\begin{gathered} \hline \text { For } \\ q \end{gathered}$	$\begin{gathered} \mathrm{POC} 2 \\ \gamma_{2} \end{gathered}$	Mean \underline{b}_{a}	Right augmentation			Wrong augmentation			PET meta average		
			$\underline{\beta}_{\underline{A R}}$	Avs	Fs	$\underline{\beta}_{\underline{A W}}$	Avs	Fs	$\underline{\underline{\beta}} \underline{\underline{1}}$	Avs	Fs
0.9	-0.7	0.160	0.249	96	96	0.148	0	96	0.154	0	96
	-0.5	0.250	0.249	96	95	0.248	96	95	0.248	96	95
	-0.3	0.340	0.249	96	93	0.348	0	93	0.351	0	84
	0	0.475	0.249	96	93	0.499	0	93	0.511	0	31
	0.3	0.610	0.250	97	94	0.649	0	94	0.661	0	27
	0.5	0.700	0.250	97	92	0.749	0	92	0.747	0	59
	0.7	0.789	0.250	97	90	0.849	0	90	0.813	0	91
0.8	-0.7	0.171	0.248	96	97	0.148	0	97	0.160	0	95
	-0.5	0.250	0.248	96	98	0.248	95	98	0.248	95	98
	-0.3	0.330	0.248	96	96	0.348	0	96	0.352	0	68
	0	0.450	0.249	95	95	0.498	0	95	0.517	0	2
	0.3	0.569	0.249	95	93	0.648	0	93	0.665	0	1
	0.5	0.649	0.249	96	93	0.749	0	93	0.737	0	23
	0.7	0.729	0.249	97	93	0.849	0	93	0.774	0	87
0.65	-0.7	0.186	0.248	94	96	0.148	0	96	0.173	0	92
	-0.5	0.250	0.248	94	96	0.248	94	96	0.248	93	96
	-0.3	0.315	0.248	95	96	0.348	0	96	0.349	0	32
	0	0.412	0.249	96	95	0.498	0	95	0.513	0	0
	0.3	0.508	0.249	97	95	0.649	0	95	0.651	0	0
	0.5	0.573	0.249	97	97	0.749	0	97	0.702	0	5
	0.7	0.637	0.249	97	97	0.849	0	97	0.702	0	80
0.5	-0.7	0.200	0.250	92	94	0.149	0	94	0.189	1	93
	-0.5	0.250	0.250	93	95	0.250	95	95	0.250	93	96
	-0.3	0.301	0.250	91	95	0.350	0	95	0.339	0	22
	0	0.376	0.250	91	95	0.500	0	95	0.491	0	0
	0.3	0.451	0.250	95	96	0.650	0	96	0.610	0	0
	0.5	0.501	0.250	95	95	0.750	0	95	0.640	0	7
	0.7	0.551	0.250	94	96	0.850	0	96	0.612	0	79
0.35	-0.7	0.215	0.250	97	95	0.180	0	95	0.240	90	57
	-0.5	0.250	0.250	95	94	0.250	91	94	0.250	96	93
	-0.3	0.285	0.250	95	93	0.320	0	93	0.323	2	51
	0	0.338	0.250	94	94	0.425	0	94	0.452	0	2
	0.3	0.390	0.250	95	93	0.529	0	93	0.546	0	4
	0.5	0.425	0.250	95	94	0.599	0	94	0.560	1	28
	0.7	0.460	0.250	95	96	0.669	0	96	0.520	41	85
0.2	-0.7	0.230	0.250	92	92	0.210	7	92	0.253	93	46
	-0.5	0.250	0.250	92	92	0.250	93	92	0.250	91	92
	-0.3	0.270	0.250	91	91	0.291	4	91	0.299	86	85
	0	0.301	0.250	94	92	0.351	0	92	0.388	23	76
	0.3	0.331	0.250	91	92	0.411	0	92	0.447	33	26
	0.5	0.351	0.250	92	93	0.451	0	93	0.447	83	0
	0.7	0.371	0.250	91	92	0.491	0	92	0.411	84	0

Note: DGP = EM $=3, \beta=0.25, N=100$ and $\rho=\gamma_{1}=0.5$

Table 4b. Experiments with q and $\gamma_{2}-$ extended range

For	POC2	Mean	Right augmentation			Wrong augmentation			PET meta average		
q	γ_{2}	\underline{b}_{a}	$\underline{\beta}_{A R}$	$A v s$	$F s$	$\underline{\beta}_{A W}$	$A v s$	$F s$	$\underline{\beta}_{M}$	$A v s$	$F s$
0.9	1.0	0.924	0.250	96	91	1.000	0	91	0.861	0	68
	1.5	1.148	0.251	97	93	1.250	0	93	0.787	0	0
	2.0	1.373	0.251	97	92	1.501	0	92	0.578	2	0
	2.5	1.597	0.251	97	93	1.751	0	93	0.344	66	0
0.8	1.0	0.849	0.250	99	93	0.999	0	93	0.746	0	53
	1.5	1.048	0.250	99	91	1.249	0	91	0.497	5	0
	2.0	1.248	0.250	98	92	1.500	0	92	0.176	70	0
	2.5	1.447	0.250	98	92	1.750	0	92	-0.067	1	0
0.65	1.0	0.735	0.250	98	98	0.999	0	98	0.591	0	34
	1.5	0.897	0.250	98	98	1.249	0	98	0.222	94	0
	2.0	1.059	0.250	99	99	1.499	0	99	-0.108	0	0
	2.5	1.220	0.250	99	99	1.749	0	99	-0.299	0	0
0.5	1.0	0.626	0.250	93	96	1.001	0	96	0.463	0	28
	1.5	0.751	0.251	92	95	1.251	0	95	0.082	18	0
	2.0	0.876	0.251	92	95	1.502	0	95	-0.203	0	0
	2.5	1.002	0.251	93	96	1.752	0	96	-0.351	0	0
0.35	1.0	0.515	0.250	93	95	1.000	0	95	0.371	41	27
	1.5	0.603	0.251	93	94	1.251	0	94	0.044	2	0
	2.0	0.691	0.251	93	93	1.501	0	93	-0.187	0	0
	2.5	0.780	0.251	93	93	1.752	0	93	-0.307	0	0
0.2	1.0	0.402	0.250	94	96	1.001	0	96	0.301	81	47
	1.5	0.452	0.250	94	95	1.251	0	95	0.080	2	0
	2.0	0.502	0.250	94	95	1.502	0	95	-0.080	0	0
	2.5	0.553	0.250	94	95	1.752	0	95	-0.171	0	0

Note: $\mathrm{DGP}=\mathrm{EM}=3, \beta=0.25, N=100$ and $\rho=\gamma_{1}=0.5$

Figure 4e. Extended version of Figure 4b

As in Section 3 the range for the POC is extended to study the paths to the β_{M}-lines, but as the paths seems simpler the extension is less dense. The extended version of figure $4 b$ is as shown.

5. Combinations of DGPs and EMs: First set of experiments

Table 5 show one set of simulations with all combinations of equations (2a), (2b) and (3) from Table 1. The parameter set is: $\gamma_{1}=0.75, \gamma_{2}=-0.5, \rho=0.7$ and $q=0.5$. Section 7 looks at a different set of parameters.

The key point to note is that only four of the $9 \times 4=36$ averages are right. This is we get it right in 11% of the estimates. It only happens when the EM is equal to or contains the DGP, and in these cases the right augmentation is needed.

The 9 lines are all illustrated by one funnel. The funnels are rather typical of the 100 calculated for the Table. Line (1) in the table is thus illustrated on Figure 5a. It is a case where the $\mathrm{DGP}=\mathrm{EM}$ so that the right augmentation finds the true value of β. The funnel consists of two funnels, the true funnel is at the left hand and it is the 'lowest'. The right hand funnel is false and actually higher. This gives a problem. The PET stars in the average for low precision, which is at the bottom of the left hand (right) funnel and due to the curvature the PET overshoots the false funnel and becomes a little worse than the wrongly augmented meta average.

The second case in Line (2) of the table and Figure 5b is more interesting. Here the EM is wrong in the sense that the true POC does not enter. Here all four averages are rather similar and all rather bad. Here the funnel looks ideal, all FAT are satisfactory. Clearly the meta analysis does not discover that something is amiss.

Table 5. All combinations of DGP and EM's, with one set of parameters

Row	DGP	EM	$\begin{gathered} \text { Mean } \\ \underline{b}_{a} \end{gathered}$	Right augmentation			Wrong augmentation			PET meta average		
				$\beta_{A R}$	Avs	Fs	$\beta_{\text {AW }}$	Avs	Fs	$\underline{\beta}_{\underline{M}}$	Avs	Fs
(1)	2a	2a	0.514	0.249	95	96	0.775	0	96	0.804	0	0
(2)	2a	2 b	0.775	0.774	0	97	0.774	0	97	0.775	0	96
(3)	2a	3	0.514	0.250	95	95	0.775	0	95	0.949	0	0
(4)	2b	2a	-0.100	-0.101	0	94	-0.101	0	94	-0.101	0	96
(5)	2 b	2 b	0.075	0.249	92	94	-0.101	0	94	-0.163	0	0
(6)	2b	3	0.075	0.250	93	95	-0.101	0	95	-0.231	0	0
(7)	3	2 a	0.164	-0.101	0	95	0.424	0	95	0.467	0	0
(8)	3	2 b	0.600	0.774	0	97	0.424	0	97	0.355	0	0
(9)	3	3	0.338	0.250	94	95	0.425	0	95	0.475	0	0
	Means		0.328	0.288	52.1	95.3	0.366	0	95.3	0.370	0	21.3

Parameters: $\gamma_{1}=0.75, \gamma_{2}=-0.5, \rho=0.7$ and $q=0.5$. Entries are averages of 100 funnels of 500 estimates.

Figure 5a: Row 1 from Table 5

Figure 5c: Row 3 from Table 5

Figure 5e: Row 5 from Table 5

Figure 5b: Row 2 from Table 5

Figure 5d: Row 4 from Table 5

Figure 5f: Row 6 from Table 5

Figure 5g: Row 7 from Table 5

Figure 5h: Row 8 from Table 5

Figure 5i: Row 9 from Table 5

The story from line (1) in repeated, but at a lower level of significance in line (3) as illustrated on Figure 5c. Here the irrelevant POC2 increases extra noise, but otherwise the results are similar. The next three lines are the symmetric case where the DGB is equation 2 b instead of 2 a .

Lines (7) and (8) are illustrated in Figures 5g and 5h that look deceptively like the two previous two-topped cases. Further, it looks as one of the two peaks may be the right one, but as one POC is missing both peaks are wrong.

Finally, in the confusing case of Figure 5 h it looks as if there is only one peak but clearly it is asymmetric. Still the right augmentations works and the PET fails.

6 Censoring some of the cases from section 4

In this section the cases from lines (1), (2) (6) and (9) in Table 5 are censored. This is the complex case of a few POC biases and censoring combined. This gives rather confusing results.

Case (1) from Table 5 is now in lines (1) and (2). Line (1) censors about half of the true funnel and line (2) censors the false funnel fully. The results are as should be predicted, censoring makes the results worse.

In the two cases of line (2) from Table 5 the PET behaves exactly as it should. But as a POC is missing the results are not right. However, the adjustment is right. In the case from line (6) in Table 5, censoring makes the false peak go away, so everything works nicely.

Table 6. Censored versions of some of the cases from Table 5

Row	$\begin{gathered} \hline \text { DGP. } \\ \text { EM } \end{gathered}$	Cen- Sored	Mean \underline{b}_{a}	Right augmentation			Wrong augmentation			PET meta average		
				$\beta_{\underline{A R}}$	Avs	Fs	$\beta_{A W}$	Avs	Fs	$\underline{\beta}_{\underline{M}}$	Avs	Fs
1a	2a, 2a	0.25	0.313	0.249	91	90	0.500	0	90	0.345	0	73
1 b	2a, 2a	0.5	0.501	0.499	0	96	0.500	0	96	0.499	0	96
2a	2a, 2b	0.6	0.313	0.249	91	94	0.500	0	94	0.413	0	0
2b	2a, 2b	0.7	0.500	0.500	0	89	0.500	0	89	0.500	0	89
6a	2b, 3	0	0.313	0.249	94	95	0.500	0	95	0.346	0	75
6 b	2b, 3	0.2	0.313	0.249	92	95	0.500	0	95	0.413	0	0
9a	3, 3	0.2	0.563	0.500	0	90	0.751	0	90	0.603	0	58
9 b	3, 3	0.3	0.564	0.499	0	97	0.750	0	97	0.603	0	64
9c	3, 3	0.4	0.376	0.249	92	94	0.750	0	94	0.489	0	16
Averages			0.360	0.360	51.1	93.3	0.583	0.0	93.3	0.468	0	21.3

Note: Row 1a and 1b are two censored version of Row 1 from Table 5. Parameters: $\gamma_{1}=0.75, \gamma_{1}=-0.5, \rho=0.7$ and $q=$ 0.5 . Entries are averages of 100 funnels of estimates. The number of regressions R made per funnel is assessed to give 500 observations after the censoring.

Figure 6a: Row 1a from Table 6

Figure 6b: Row 1a from Table 6

Figure 6c: Row 2a from Table 6

Figure 6e: Row 6a from Table 6

Figure 6g: Row 9a from Table 6

Figure 6d: Row 2b from Table 6

Figure 6f: Row 5b from Table 6

Figure 6h: Row 9b from Table 6

Figure 6i: Row 9c from Table 6

Finally, in the case from line (9) of Table 5 the results are rather confusing. Here censoring is not rightly detected by the PET. However the PET moves toward the mean.

7. Combinations of DGPs and EMs: Second set of experiments

This section makes the same analysis as in section 5 but for another set of parameters $\gamma_{1}=0.5, \gamma_{1}=$ $0.5, \rho=0.5$ and $q=0.25$. I have chosen parameters that in Sections 3 and 4 give results that differ substantially. However, the pattern in the results of the present exercise is not very different from the one in section 5 .

Table 7. All combinations of DGP and EM's, with one set of parameters

Row	DGP	EM	Mean	Right augmentation			Wrong augmentation			PET meta average		
			\underline{b}_{a}	$\underline{\beta}_{A W}$	$A v s$	$F s$	$\underline{\beta}_{A R}$	$A v s$	$F s$	$\underline{\beta}_{\underline{M}}$	$A v s$	$F s$
1	2 a	2 a	0.313	$\mathbf{0 . 2 4 9}$	91	90	0.500	0	90	0.345	0	73
2	2 a	2 b	0.501	0.499	0	96	0.500	0	96	0.499	0	96
3	2 a	3	0.313	$\mathbf{0 . 2 4 9}$	91	94	0.500	0	94	0.413	0	0
4	2 b	2 a	0.600	0.600	0	89	0.601	0	89	0.600	0	90
5	2 b	2 b	0.338	$\mathbf{0 . 2 4 9}$	95	95	0.600	0	95	0.327	13	97
6	2 b	3	0.338	$\mathbf{0 . 2 5 0}$	90	94	0.600	0	94	0.419	0	20
7	3	2 a	0.663	0.600	0	91	0.851	0	91	0.709	0	48
8	3	2 b	0.589	0.499	0	96	0.850	0	96	0.594	0	97
9	3	3	0.402	$\mathbf{0 . 2 4 9}$	92	94	0.850	0	94	0.449	0	85
	Means	0.451	0.383	51.0	93.2	0.650	0.0	93.2	0.484	1.4	67.3	

Parameters: $\gamma_{1}=0.5, \gamma_{1}=0.5, \rho=0.5$ and $q=0.25$. Entries are averages of 100 funnels of 500 estimates.

Figure 7a: Row 1 from Table 7

Figure 7b: Row 2 from Table 7

Figure 7c: Row 3 from Table 7

Figure 7e: Row 5 from Table 7

Figure 7g: Row 7 from Table 7

Figure 7d: Row 4 from Table 7

Figure 7f: Row 6 from Table 7

Figure 7h: Row 8 from Table 7

Figure 7i: Row 9 from Table 7

8. The simulation program

The simulation program is written as three stata do-programmes. They run three loops as covered in Table 8a.

Table 8a. The three loops of the simulation programs

[^3]The program consists of three do-files:
programs_meta, which runs the middle and inner level. This program is not run separately, but only by the other two programs. It uses the simulation programs of stata.
calibration runs the middle and inner level to generate one funnel. It calls programs_meta and generate a funnel to help to calibrate the big running. All funnels shown are from the calibration do-file. 11 parameters have to be set see Table 8 b.
running runs all three levels. It calls programs_meta and runs R funnels. 12 parameters have to be set here see Table 8 b .

Table 8 b show what the parameters that have to be set are and where they have to be set. Also, it lists the values tried in the experiments.

Table 8b. Parameters to be set

To be The content of the parameter to be set set	Set in calibration running	Normally set at	Experiments in	
$R \quad$ Number of funnels	X	100 or 1000		
N Number of estimates for funnel	X X	500		
β Effect if interest, coefficient on x	X X	0.25		
Sd ε Std of x in DGP	$\mathrm{X} \quad \mathrm{X}$	1	2	$0.5,2,3,4,6,7$
Sd $z_{1} \mathrm{Std}$ of POC $1\left(z_{1}\right)$ in DGP	X X	1		
$\mathrm{Sd} z_{2} \mathrm{Std}$ of POC $2\left(z_{2}\right)$ in DGP	$\mathrm{X} \quad \mathrm{X}$	1		
γ_{1} Coefficient on POC 1 in DGP	X X	0.5 or 0.75	3	Big range
γ_{2} Coefficient on POC 2 in DGP	$\mathrm{X} \quad \mathrm{X}$	-0.5 or 0.5	4	$-0.5,-0,25,0, \ldots, 1$
ρ Correlation of z 1 and z 2 with x in DGP	$\mathrm{X} \quad \mathrm{X}$	0.5 or 0.7	3	0.9 to 0
q Probability of inclusion of POCs in EM	$\mathrm{X} \quad \mathrm{X}$	0.5	4	0.9 t0 0.2
DGP Data generating process: (1), (2a) (2b) or (3)	$\mathrm{X} \quad \mathrm{X}$	Both (1)		All combinations of
EM Estimation model, using OLS	X X	Both (1) or (3)	5,6,7	(2a) (2b) and (3)

To run calibration takes about 20 seconds for a funnel with $\mathrm{N}=500$ points.
To run running with 100 similar funnels takes about 15 minutes

Conclusions

This appendix reports 182 experiments. For each one 50,000 simulated regressions have been made. This gives a total of $9,100,000$ regressions, and as some experiments have needed more due to censoring and the 40 funnels are independently generated it adds to more than $91 / 2$ million regressions.

I take the case with zero POCs to represent the case with many POCs. And on the other end I have covered the case with 1 and with 2 POCs. Since these cases give rather simple patterns in the results when to the parameter variation tried, I assess that we understand these cases rather well. But it will, of course, be easy to suggest other combinations of the parameters, e.g., by untying ρ and q for the two POCs.

However, what will really blow up the number of experiments is to consider cases with 3,4 or even more POCs.

[^0]: ${ }^{1}$. Street address: Fuglesangs Allé 4, Building 2632 (L), DK-8210 Aarhus V. E-mail: mpaldam@econ.au.dk. URL: http://www.martin.paldam.dk, for project add /Mpapers-method.php.

[^1]: Note: The equations have no constant, so the exogenous variables, x, z_{1}, z_{2} and the noise term ε have zero means.
 a. The same terminology applies to $\beta_{A E} \%$ and $\beta_{A W} \%$.

[^2]: Note: $\mathrm{DGP}=\mathrm{EM}=3, \beta=0.25, N=500, R=100, \gamma_{2}=0.5$ and $q=0.5$.

[^3]: Outer loop: Set \boldsymbol{R} to generate R funnels: [stata: running, set N and R, and all parameters
 Middle loop: Set N to generate one funnel with N estimates using sample length $M=20,21, \ldots, 19+N$ simulated observations. [stata: calibrate, set N, and all parameters]

 Inner Loop: One primary regression to get results \boldsymbol{i}. Using M observations to
 Generate series x, z_{1} and z_{2}. All have zero mean and a standard deviation, sd, set. Also, z_{1} and z_{2} are correlated with x. The correlation is the same, it is set.
 DGP, calculate y by one of 5 possible equation from x and z_{1} or z_{2}. The equation is set. In all experiments $\beta=0.25$ is the effect of interest.
 EM, estimate $b \approx \beta$. By an equation that is set from the same 5 possibilities as the DGP. The POC (z_{1} or z_{2}) is included with the chance ω, set.
 Keep: Results $i=\left(b_{i}, s_{i}, \omega_{i}, t_{i}, p_{i}, \varphi_{i}\right)$. Altogether 6 variables are kept.
 [stata: programs_meta, called by the other two programs, all parameters should be set]
 Back to middle loop: After N runs of inner loop we have the ($N \times 6$) results matrix, which is the information for one funnel. Estimate the average, \underline{b}, FAT-PET MRA giving $\left(\beta_{M}, \beta_{F}\right.$) and two augmentations, using φ, giving $\left(\beta_{A R}, \beta_{F R}\right)$ and ω giving ($\beta_{A W}, \beta_{F W}$) and six counts; Avs1 counts if $\beta_{M} \approx \beta, F s 1$ count if $\beta_{F} \approx 0, A v s 2$ count if $\beta_{A R} \approx \beta, F s 2$ count if $\beta_{F R} \approx 0, A v s 3$ count if $\beta_{A W} \approx \beta$ and finally $F s 3$ count if $\beta_{F W} \approx 0$. Where all the " \approx " means that it is not rejected that the said equation holds at the 5% level of significance.
 Keep: the estimates of $\underline{b}, \beta_{M}, \beta_{A R}, \beta_{A W}$, and the latest values of $A v s 1, F s 1, A v s 2, F s 2, A v s 3, F s 3$.
 Back to outer loop: After R runs of middle loop we have the $(\boldsymbol{R} x \mathbf{4})$ result matrix of the $\underline{b}, \beta_{M}, \beta_{A R}, \beta_{A W}$, and the six counts: Avs1, Fs1, Avs2, Fs2, Avs3, Fs3. Calculate the average of the four columns. Report the 10 statisics.

